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Preface

Evidence is accumulating that in the center of our own galaxy some 106 solar
masses cluster in a region with a diameter of the order of a few astronomical
units1. Theoretical analysis strongly suggests that this can only be a black hole.
This is a gravitational configuration where the inner region is cut off from the
outside by an event horizon, a semi-permeable closed surface surrounding it:
material from the outside can fall in but communication from the inside to the
outside is impossible.

Studies of other galaxies have shown that such supermassive black holes are
rather common and probably reside at the center of every galaxy. Cosmologically
speaking, the supermassive black hole in the Galactic Center is in our backyard,
only about 26 000 light years away from us. This makes it the best observed
candidate for studying all aspects of black hole physics and is an ideal laboratory
for black hole physics.

The theory of black hole physics, developed mainly by general relativists
and considered in the past as being no more than a mathematical curiosity, can
now be applied to realistic astrophysical situations like that in our Galactic Center.
Clearly, the time has come for general relativists and astrophysicists to collaborate
on these issues and our book represents an attempt in this direction. The Galactic
Center is a unique place where these two fields really start to touch each other.

On behalf of the German Physical Society (DPG) and jointly with
Dr Joachim Debrus, director of the Physics Center in Bad Honnef, we organized
a DPG School on the Galactic Black Hole in Bad Honnef addressing graduate
students in physics, astronomy and mathematics from different countries.
Whereas this was a school and not a workshop for specialists, we, nevertheless,
invited as teachers physicists/astrophysicists who are working at the foremost
research front of this subject. This book contains the lectures given at that school,
in an order which should allow a beginner to tackle the material by commencing
from fairly elementary topics in general relativity and in the astrophysics of
our Galaxy right to the whereabouts of the central supermassive black hole. In
fact, one of the goals, besides teaching the students, was to teach the scientists

1 1 AU � 150 × 106 km = average distance between earth and sun, see our table of units and
constants in the back of the book, p 346.

xi



xii Preface

themselves: astrophysics for the relativist and relativity for the astrophysicist.
Hence, we hope the book will be a useful resource for students, lecturers and
researchers in both fields alike.

The school was mainly financed by the Wilhelm and Else Heraeus
Foundation, Hanau and we are grateful to its director, Dr Ernst Dreisigacker,
for the support. We thank Christian Heinicke (Cologne) for help in editing the
book and Jim Revill from IoP Publishing for a good and pleasant collaboration in
producing this book.

Heino Falcke (Bonn) and Friedrich W Hehl (Cologne)
August 2002



Chapter 1

The Schwarzschild black hole: a general
relativistic introduction

Christian Heinicke and Friedrich W Hehl
University of Cologne, Germany

The gravitational field of a homogeneous spherically symmetric body (‘star’) is
derived in Newton’s and in Einstein’s gravitational theory, respectively. On the
way to these results, Newton’s theory is formulated in a quasi-field-theoretical
form, its incompatibility with special relativity theory is pointed out, and it is
outlined how one arrives at Einstein’s field equation. The gravitational field
of a simple Einsteinian model star consists of the exterior and the interior
Schwarzschild solutions which are joined together at the surface of the star. Their
derivation and interpretation will be discussed; in particular the Schwarzschild
radius (for the sun ≈3 km) and its relation to the event horizon of the
corresponding black hole will be investigated.

1.1 Newton’s gravitational theory in quasi-field-theoretical
form

Gravity exists in all bodies universally and is proportional to the quan-
tity of matter in each . . . If two globes gravitate towards each other, and
their matter is homogeneous on all sides in regions that are equally
distant from their centers, then the weight of either globe towards the
other will be inversely as the square of the distance between the centers.

Isaac Newton (1687)

The gravitational force of a pointlike mass m2 on a similar one of mass m1
is given by Newton’s attraction law:

F2→1 = −G
m1m2

|r|2
r
|r| (1.1)

3
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m1

m2

r

r2
r1

F2→1

F1→2

y

x

z

Figure 1.1. Two mass points m1 and m2 in three-dimensional space, Cartesian coordinates
x, y, z.

where G is Newton’s gravitational constant, see [8],

G
SI= 6.675 59(27)× 10−11 (m/s)

4

N
.

The vector r := r1 − r2 points from m2 to m1, see figure 1.1. According to
actio = reactio (Newton’s third law), we have F2→1 = −F1→2. Thus complete
symmetry exists in the gravitational interaction of the two masses with each other.

Let us now distinguish the mass m2 as a field-generating active gravitational
mass and m1 as a (pointlike) passive test mass. Accordingly, we introduce
a hypothetical gravitational field describing the force per unit mass (m2 ↪→
M,m1 ↪→ m):

f := F
m
= −GM

|r|2
r
|r| . (1.2)

With this definition, the force acting on the test mass m is equal to the field
strength × gravitational charge (mass) or FM→m = m f , in analogy to
electrodynamics. The active gravitational mass M is thought to emanate a
gravitational field which is always directed to the center of M and has the same
magnitude on every sphere with M as center, see figure 1.2.

Let us now investigate the properties of the gravitational field (1.2).
Obviously, there exists a potential

φ = −G
M

|r| f = − gradφ. (1.3)

Accordingly, the gravitational field is curl free: curl f = 0.
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M

m

r
f

Figure 1.2. The ‘source’ M attracts the test mass m.

By assumption it is clear that the source of the gravitational field is the mass
M . We find, indeed, that

div f = −4πGMδ3(r) (1.4)

where δ3(r) is the three-dimensional (3D) delta-function. By means of the
Laplace operator � := div grad, we infer, for the gravitational potential, that

�φ = 4πGMδ3(r). (1.5)

The term M δ3(r) may be viewed as the mass density of a point mass. Equation
(1.5) is a second-order linear partial differential equation for φ. Thus the
gravitational potential generated by several point masses is simply the linear
superposition of the respective single potentials. Hence we can generalize the
Poisson equation (1.5) straightforwardly to a continuous matter distribution ρ(r):

�φ = 4πGρ. (1.6)

This equation interrelates the source ρ of the gravitational field with the
gravitational potential φ and thus completes the quasi-field-theoretical description
of Newton’s gravitational theory.

We speak here of quasi-field-theoretical because the field φ as such
represents a convenient concept. However, it has no dynamical properties,
no genuine degrees of freedom. The Newtonian gravitational theory is an
action at a distance theory. When we remove the source, the field vanishes
instantaneously. Newton himself was very unhappy about this consequence.
Therefore he emphasized the preliminary and purely descriptive character of his
theory. But before we liberate the gravitational field from this constraint by
equipping it with its own degrees of freedom within the framework of general
relativity theory, we turn to some properties of the Newtonian theory.
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tidal acceleration

Figure 1.3. Tidal forces in a spherically symmetric gravitational field.

A very peculiar fact characteristic to the gravitational field is that the
acceleration of a freely falling test body does not depend on the mass of this body
but only on its position within the gravitational field. This comes about because
of the equality (in suitable units) of the gravitational and inertial mass:

inertial
m r̈ = F = grav

m f . (1.7)

This equality has been well tested since Galileo’s time by means of pendulum and
other experiments with an ever increasing accuracy, see Will [21].

In order to allow for a more detailed description of the structure of a
gravitational field, we introduce the concept of a tidal force. This can be best
illustrated by means of figure 1.3. In a spherically symmetric gravitational field,
for example, two test masses will fall radially towards the center and thereby get
closer and closer. Similarly, a spherical drop of water is deformed to an ellipsoidal
shape because the gravitational force at its bottom is bigger than at its top, which is
at a greater distance from the source. If the distance between two freely falling test
masses is relatively small, we can derive an explicit expression for their relative
acceleration by means of a Taylor expansion. Consider two mass points with
position vectors r and r+δr , with |δr| � 1. Then the relative acceleration reads:

�a = [ f (r + δr)− f (r)] = δr · Grad f (r) (1.8)

where Grad denotes the vector gradient. We may rewrite this accordingly (the
sign is conventional, ∂/∂xa =: ∂α , x1 = x , x2 = y, x3 = z):

Kab := −(Grad f )ab = −∂a fb a, b = 1, 2, 3.

We call Kab the tidal force matrix. The vanishing curl of the gravitational field is
equivalent to the symmetry Kab = Kba . Furthermore, Kab = ∂a∂bφ. Thus, the
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Poisson equation becomes

3∑
a=1

Kaa = trace K = 4πGρ. (1.9)

Accordingly, in vacuum Kab is trace free.
Let us now investigate the gravitational potential of a homogeneous star with

constant mass density ρ� and total mass M� = (4/3)πR3�ρ�. For our sun, the
radius is R� = 6.9598× 108 m and the total mass is M = 1.989× 1030 kg.

Outside the sun (in the idealized picture we are using here), we have a
vacuum. Accordingly, ρ(r) = 0 for |r| > R�. Then the Poisson equation reduces
to the Laplace equation

�φ = 0 for r > R�. (1.10)

In 3D polar coordinates, the r -dependent part of the Laplacian has the form
(1/r2)∂r (r2∂r ). Thus (1.10) has the solution

φ = α
r
+ β (1.11)

where α and β are integration constants. Requiring that the potential tends to zero
as r goes to infinity, we get β = 0. The integration constant α will be determined
from the requirement that the force should change smoothly as we cross the star’s
surface, i.e. the interior and exterior potentials and their first derivatives have to
be matched continuously at r = R�.

Inside the star we have to solve

�φ = 4πGρ� for r ≤ R�. (1.12)

We find

φ = 2

3
πGρ�r2 + C1

r
+ C2 (1.13)

with integration constants C1 and C2. We demand that the potential in the center
r = 0 has a finite value, say φ0. This requires C1=0. Thus

φ = 2

3
πGρ�r2 + φ0 = GM(r)

2r
+ φ0 (1.14)

where we have introduced the mass function M(r) = (4/3)πr3ρ� which
measures the total mass inside a sphere of radius r .

Continuous matching of φ and its first derivatives at r = R� finally yields:

φ(r) =


−G

M�
|r| for |r| ≥ R�

G
M�
2R3�

|r|2 − 3GM�
2R�

for |r| < R�.
(1.15)

The slope (first derivative) and the curvature (second derivative) of this curve
represent the magnitudes of the gravitational and the tidal forces, respectively.
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interior

R0

φ

∼ r2

φ0−

∼ 1
r

∞
r

exterior−→

Figure 1.4. Newtonian potential of a homogeneous star.

1.2 Special relativity and Newton’s theory: a clash

Not only have we no direct intuition of the equality of two periods, but
we have not even direct intuition of the simultaneity of two events oc-
curring in two different places.

Henri Poincaré (1902)

Apparently, the space surrounding us has three dimensions. Together
with the one-dimensional time, it constitutes four-dimensional (4D) spacetime.
Distinguished frames of reference are the inertial frames. They are understood
as infinitely extended frames in which force-free particles are at rest or move
uniformly along straight lines in the sense of Euclidean geometry. In them, we
may introduce coordinates

x0 = ct, x1 = x, x2 = y, x3 = z, or xµ with µ = 0, 1, 2, 3. (1.16)

As a rule, all Greek indices shall run from 0 to 3. In an empty space with respect to
an inertial frame of reference, there is no distinction between the different points
in it and no preferred direction. Likewise, there is no preferred instant of time.

With this homogeneous and spatially isotropic spacetime in mind, we state
the special relativity principle: the laws of physics are the same in all inertial
frames.

A prototypical law of nature to be stated in this context is the principle
of the constancy of the speed of light: light signals in vacuum are propagated
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rectilinearly, with the same speed c at all times, in all directions, in all inertial
frames, independently of the motion of their sources.

By means of these two principles, we can deduce the Poincaré (or
inhomogeneous Lorentz) transformations which encompass four spacetime
translations, three spatial rotations, and three Lorentz boosts, i.e. velocity
transformations. The ‘essence’ of this transformation can also be expressed in
a somewhat different manner.

We define a tensor T of covariant rank k and contravariant rank l,
respectively, by means of its behavior under coordinate transformations,

Tµ1
′...µl

′
ν1
′...νk

′ = P
µ′1
µ1 . . . P

µ′l
µl Pν1

ν ′1
. . . Pνk

ν ′k
Tµ1...µl

ν1...νk (1.17)

where we have introduced the Jacobian matrix and its inverse according to

Pα
′

α := ∂xα
′

∂xα
Pαα′ =

∂xα

∂xα′
Pαα′ P

α′
β = δαβ . (1.18)

The summation convention is assumed, i.e. summation is understood over
repeated indices. The values of the components of tensors do change, but only in
the specific linear and homogeneous manner indicated here. Equations of tensors
remain form invariant or covariant, i.e. the transformed equations look the same
but with the unprimed indices replaced by primed ones. If one contracts co- and
contravariant tensors in such a way that no free index is left, viw

i , e.g. one gets a
scalar, which is invariant under transformations, i.e. it does not change its value.
The latter represents an observable quantity. The generic case of a covariant tensor
of first rank is the partial derivative of a scalar function φ,α := ∂φ/∂xα and the
typical contravariant tensor is the coordinate differential dxα. Besides tensors, we
also need spinors in special relativity, but they are not essential in gravitational
theory.

We define the Minkowski metric as follows.

ds2 := −c2 dt2 + dx2 + dy2 + dz2 = gαβ dxα dxβ (1.19)

where (in Cartesian coordinates)

gαβ
∗= ηαβ := diag(−1,+1,+1,+1) = ηαβ ∗= gαβ. (1.20)

The gαβ denote the inverse of the metric tensor. Under a Poincaré transformation,
the components of the Minkowski metric ηαβ remain numerically invariant. This
metric defines an invariant spatiotemporal distance between two spacetime points
or events, as they are called. Spatial distance alone between two points can be
different for different observers and the same applies to time intervals. This
manifests itself in the well-known effects of time dilation and length contraction.

Now we are able to express the principle of special relativity in the following
way: the equations of physics describing laws of nature transform covariantly
under Poincaré transformations.
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How can we apply this to gravity? In Newtonian gravity, the potential obeys
the Poisson equation �φ = 4πGρ. The corresponding wave equation can be
represented as

�φ = ∂α(ηαβ∂βφ) = − 1

c2

∂2φ

∂ t2
+�φ = 4πGρ (1.21)

and thus is manifestly Poincaré invariant. Hence, the Poisson equation as such
is not Poincaré invariant but only a limiting case of the wave equation for static
situations.

The first idea for a Poincaré-covariant equation for the gravitational potential
would be the obvious generalization by admitting the gravitational potential φ
and the source ρ to be time dependent and interrelating both by means of a
gravitational wave equation �φ = 4πGρ. But what is the source ρ now? In
the case of a pressure-less fluid or a swarm of dust particles where all components
move parallelly with the same velocity (and correspondingly have a common rest
system), a Poincaré-invariant meaning for the mass density can be found, but this
is not possible in general. Moreover, we learn from special relativity that mass
and energy are equivalent. Binding forces and therewith stress within matter are
expected to contribute to its gravitating mass. Thus, in a relativistic theory of
gravitation, we have to replace mass density by energy density. Next, we have to
look for a Poincaré invariant quantity which contains the (mass-)energy density
and will reduce to it in special cases.

And indeed, special relativity provides such a quantity. In electrodynamics,
Minkowski found a symmetric second-rank tensor T αβMax whose divergence yields

the Lorentz force density ∂αT αβMax = f β . For an electrically charged perfect fluid,
characterized by mass-energy density ρ and pressure p, the equations of motion
can be written in the form

∂α(T
αβ
Max + T αβMat) = 0 (1.22)

where we have introduced the energy–momentum tensor of the perfect fluid:

T αβMat =
(
ρ + p

c2

)
uαuβ + pgαβ. (1.23)

The vector uα = dxα/dτ = γ (v)(c, v) is the four-velocity of the fluid elements
(and v the three-velocity with respect to the chosen frame of reference. The
Lorentz factor γ is given by γ (v) := (1 − v2/c2)−1/2). The components of
the energy–momentum tensor are not invariant, of course. In the rest frame of
the fluid, the observer sees a fluid at rest with a certain mass-energy distribution
and an isotropic pressure p: T αβ

∗= diag(ρc2, p, p, p). However, with respect to
a moving frame, there is a moving energy distribution which results in an energy
flux density. Moreover, isotropic pressure transforms into anisotropic stress etc.
In general, we arrive at the following structure (momentum flux density and stress
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are equivalent notions, i, j = 1, 2, 3):

Tµν =
(

T00 T0i

Ti0 Ti j

)
=


energy
density

momentum density

en
er

gy
flu

x
de

ns
ity

momentum
flux
density

 . (1.24)

Now we can construct a scalar invariant encompassing the mass-energy density
in the following way:

T := Tα
α = gαβT αβ = −ρc2 + 3 p. (1.25)

For ‘non-relativistic matter’, we find ρ � 3 p/c2. Thus, indeed, T ≈ ρc2. The
Poincaré-invariant field equation

�φ = κT (1.26)

then yields the Newtonian Poisson equation in an appropriate limiting case and
for an appropriately chosen coupling constant κ .

At first sight, this defines a viable gravitational theory. However, it turns out
that this theory runs into serious conflicts with observations. A scalar gravitational
theory does not allow for the deflection of light in gravitational fields because
a scalar field cannot be coupled reasonably to the electromagnetic field, since
the electromagnetic energy–momentum tensor is traceless. Light deflection has
been experimentally confirmed beyond doubt. Thus, we have to look for different
possibilities in order to interrelate electromagnetic energy–momentum and the
gravitational potential. To this end we will now turn to the gravitational field.

1.3 Accelerated frames of reference, equivalence principle
and Einstein’s field equation

Die Relativitätstheorie bringt uns aber nicht nur den Zwang, Newtons
Theorie zu modifizieren; sie schränkt auch zum Glück in weitgehendem
Maße die Möglichkeiten hierfür ein.

Albert Einstein (1913)

An observer who measures the acceleration of a freely falling body within a
sufficiently small laboratory obtains the same results whether his/her laboratory
is at rest in a gravitational field or appropriately accelerated in gravity-free space.
Consequently, the quantity representing the inertial forces in the equation of
motion should be similar to the quantity representing the gravitational forces. In
an inertial frame in Cartesian coordinates xµ, a force-free test particle obeys the
equation of motion

m
d2xµ

dτ 2
= 0. (1.27)
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Figure 1.5. The local equivalence of an accelerated frame of reference and a gravitational
field. Note, if we compare the gravitational and the inertial forces acting on two point
particles in each case, because of the tidal effect, we can distinguish the laboratory on
earth and that in space. However, locally, one test particle moves in the same way in both
laboratories.

Thus it moves in a straight line xµ(τ) = aµ+bµτ (aµ, bµ constant vectors). The
space laboratory represents an accelerated frame of reference with coordinates
xµ

′
. We apply a coordinate transformation xα

′
(xµ) to (1.27) and find

m
d2xα

′

dτ 2
+ m�α

′
β ′γ ′

dxβ
′

dτ

dxγ
′

dτ
= 0 (1.28)

where the connection components

�α
′
β ′γ ′

∗= ∂xα
′

∂xα
∂2xα

∂xβ ′∂xγ ′
(1.29)

represent the inertial field. For a rotating coordinate system, e.g. � encompasses
the Coriolis force etc. So far �α

′
β ′γ ′ is only an coordinate artifact and has no

degrees of freedom of its own. We can always introduce a global coordinate
system such that the �α

′
β ′γ ′ vanish everywhere.

We can deduce an alternative representation of �α
′
β ′γ ′ from the tensorial

transformation behavior of the metric tensor (we suppress the dashes here):

�αµν := 1
2 gαβ(∂νgβµ + ∂µgβν − ∂βgµν). (1.30)
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Thus, the connection components, also called the Christoffel symbols in the case
of a Riemannian space, can be expressed in terms of ten functions gαβ = gβα
which tentatively serve as the gravitational or inertial potential. In order to be
able to choose a coordinate system such that �α

′
β ′γ ′ = 0 globally, the �αβγ have

to fulfil a certain integrability condition, namely their ‘curl’ has to vanish:

0 = Rµναβ := ∂α�µνβ − ∂β�µνα + �µσα�σ νβ − �µσβ�σ να. (1.31)

The quantity Rαβµν is called the Riemannian curvature tensor. If Rαβµν = 0, we
have a flat Minkowski spacetime (possibly in curvilinear coordinates), whereas
Rαβµν �= 0 implies a curved Riemannian spacetime. In a Riemannian space, the
curvature tensor fulfills certain algebraic identities which reduce its number of
independent components to 20:

Rαβµν = −Rαβνµ, Rαβµν = −Rβαµν, Rαβµν + Rανβµ + Rαµνβ = 0. (1.32)

Let us now construct the field equation for gravity by trying to proceed along
the same line as in other successful field theories, such as electrodynamics. The
equations of motion with the abbreviation ˙( ) = d/dτ read:

Maxwell: m ẍα = q ẋµ × Fαµ
electric el.-mag.
current field strength
inertial inertial

Gravitation: m ẍα = −m ẋµ ẋν × �αµν.

(1.33)

This fits quite nicely into our considerations in the previous section. The current,
which couples to the inertial field, is the quantity mẋµ ẋν which corresponds to
the energy–momentum tensor of dust T αβ = ρ ẋα ẋβ . This coincides with the
earlier suggestion that T αβ should be the source of gravity.

In electrodynamics, we have the four-potential Aµ = (φelec, A), φelec is
the 3D scalar electric potential, A the 3D vector potential. Furthermore, the
electromagnetic field strength is denoted by Fαβ = ∂αAβ − ∂β Aα and the current
by Jα. With the Lorenz gauge, ∂µAµ = 0, we find that

divergence of field ∼ d’Alembertian on potential ∼ source current

∂µ Fµν = � Aν = J ν.
(1.34)

However, it is not so simple in gravity. Gravitational radiation carries energy,
and energy is, as we have argued earlier, itself a source of gravity. Thus,
the gravitational field has a self-interaction which distinguishes it from the
electromagnetic field. Consequently, gravity is described by a nonlinear field
equation of the following type:

‘ Div ’� + �2 ∼ �gαβ + nonlinear ∼ Tαβ. (1.35)
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That the nonlinearity is only quadratic will be a result of our subsequent
considerations.

So much for the general outline. To fix an exact equation, we need
some additional criteria. In particular, we have to say something about general
covariance. We consider an accelerated frame of reference locally equivalent
to one which is at rest in a gravitational field. Gravity is a relatively weak
force, but it has an infinite range and is all pervading. We will hardly find a
gravity-free spot in the universe. Hence, in general we find ourselves in a non-
inertial frame, even if the deviation from an inertial system may be negligible on
small scales. From this point of view, the fundamental laws of physics should
be covariant not only under Poincaré transformations but also under general
coordinate transformations. There is not much change with respect to the algebra
of tensors, but a very noticeable change comes about in tensor analysis: the
partial derivative of a tensor will not transform like a tensor. This can be fixed
by introducing the so-called covariant derivative:

∇αTµν = ∂αTµν + �µγαT γ ν − �γ ναTµγ . (1.36)

By replacing the partial derivatives in the special relativistic formulae by covariant
ones, we obtain general covariant equations. This ‘correspondence’ principle
mostly, but not always, yields physical reasonable generalizations of the special
relativistic laws.

In Newton’s theory, the mass density as source is linearly related to the tidal
force. Can we also define tidal forces in general relativity?

The equation of motion (1.27) has a geometrical interpretation, too. The
metric allows the definition of an invariant length of a curve γ , parametrized by
xµ = xµ(τ), connecting two spacetime points A = xµ(0) and B = xµ(τ0) by
means of the line integral

l =
∫
γ

ds =
∫ τ0

0
dτ

√
ẋµẋνgµν. (1.37)

This length l represents the proper time of an observer who moves along the path
γ from A to B. The necessary and sufficient condition for γ to be a curve of
extremal length is found to be (provided γ is parametrized by its arc length)

ẍµ + �µαβ ẋα ẋβ = 0. (1.38)

This is the Euler–Lagrange equation for the variational problem δ
∫

ds = 0; and
it coincides with the equation of motion (1.27). In geometry, (1.38) is called the
geodesic equation and its solutions xµ are geodesics. In flat space, the geodesics
are straight lines, the geodesics of a sphere are circuits, etc.

Thus, freely falling particles move along the geodesics of Riemannian
spacetime. Now we can address the question of tidal accelerations between two
freely falling particles. Let the vector vµ be the vector describing the distance
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between two particles moving on infinitesimally adjacent geodesics. A simple
calculation yields the equation for the geodesic deviation:

D2vµ

Dτ 2 = ẋν ẋαvβ Rµναβ (1.39)

where D/Dτ denotes the absolute derivative along the curve xα. Eventually, the
tidal acceleration is represented by the curvature tensor. In Newton’s theory, the
tidal force is linearly related to the tidal acceleration. The energy–momentum
tensor, as the suspected source of gravity, is a symmetric second-rank tensor.
Therefore it has ten independent components.

Now only the problem of how to interrelate the second-rank symmetric
energy–momentum tensor to the fourth-rank Riemannian curvature tensor
remains. In analogy to the Newtonian case we would like this relation to be linear.
It turns out that such a relation has to be of the form

αRµν + βRgµν = Tµν (1.40)

with the Ricci tensor
Rαβ := Rµαµβ (1.41)

and the curvature scalar
R := Rαα. (1.42)

The constants α and β have to be fixed by additional conditions. The
vanishing divergence of the energy–momentum together with the second Bianchi
identity (a kind of integrability condition)

∇λRαβµν +∇ν Rαβλµ + ∇µRαβνλ = 0 (1.43)

leads to Einstein’s field equation:

Rµν − 1
2 Rgµν︸ ︷︷ ︸

Einstein tensor Gµν

+�gµν = κTµν. (1.44)

The value κ := 8πG/c4 of Einstein’s gravitational constant can be determined
by a transition to the Newtonian limit of general relativity. Moreover, we have
added a cosmological term containing the cosmological constant �.

The energy–momentum tensor has ten independent components whereas the
Riemannian curvature tensor has 20 independent components. Hence, the energy–
momentum tensor determines only a part of the curvature. Indeed, we have the
decomposition

Rµναβ = Cµναβ + 1
2 (gµαLβν − gµβLαν − gναLβµ + gνβLαµ) (1.45)

where
Lαβ := Rαβ − 1

6 Rgαβ = Lβα (1.46)
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(for recent work on the L-tensor, see [11]). This part of the curvature is
algebraically linked to the matter distribution by means of Einstein’s equation.
Consequently, it vanishes in vacuum and only the irreducible fourth-rank part
Cαβγ δ , the conformal Weyl curvature with ten independent components, remains.

1.4 The exterior Schwarzschild solution

Es ist eine ganz wunderbare Sache, dass von einer so abstrakten Idee
aus die Erklärung der Merkuranomalie so zwingend herauskommt.

Karl Schwarzschild (1915)

Just a few months after Einstein had published his new gravitational theory,
the astronomer K Schwarzschild found an exact solution to Einstein’s field
equation. The so-called Schwarzschild solution is amazingly simple, especially
in view of the field equations which are very complicated. However, the
Schwarzschild solution is not a degenerated case for over-simplified situations
but physically most meaningful. It is this solution by means of which one can
explain most general relativistic effects in the planetary system. The reason is
that it describes the gravitational field outside of a spherically symmetric body—
like the planets and the sun.

We start from the spherically symmetric metric:

ds2 = −eν(r,t)c2 dt2+eλ(r,t) dr2+r2 d�2 d�2 := dθ2+sin2 θ dϕ2. (1.47)

One can now compute the Christoffel symbols, the Riemann tensor, and the
Einstein tensor for this ansatz. This can be done by hand, of course. It is more
convenient to use computer algebra, see section 1.8. For vacuum and � = 0, it is
relatively simple to find a solution to Gαβ = κTαβ = 0, namely

ds2 = −
(

1− 2m

r

)
c2 dt2 + 1

1− 2m
r

dr2 + r2 d�2. (1.48)

This is the Schwarzschild metric [19]. There is no time dependence although we
did allow for that in the ansatz (1.47). The vacuum spacetime structure generated
by any spherically symmetric body is static. This applies also for the exterior field
of a radially oscillating body. This fact is known as Birkhoff’s theorem.

The parameter 2m is an integration constant. Its interpretation can be
obtained by means of a transition to Newton’s theory. It turns out that (G is
Newton’s gravitational constant and M is the mass of gravitating body)

rS := 2m = 2GM

c2 . (1.49)

This is the Schwarzschild (or gravitational) radius. In this chapter, we distinguish
between m and M . In subsequent chapters, it is generally assumed that c = 1 =
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G. Then, we have m = M . At the Schwarzschild radius rS the metric coefficients
become singular. However, this is only a so-called coordinate singularity since
the curvature tensor (and therewith physically meaningful quantities like the
tidal force) remains finite. We can also see this explicitly when we introduce
suitable coordinates, like isotropic coordinates. Therefore we define a new radial
coordinate r̄ as follows:

r = r̄
(

1+ m

2r̄

)2
. (1.50)

Then, the Schwarzschild metric becomes

ds2 =
(

1− m
2r̄

1+ m
2r̄

)2

c2 dt2 −
(

1+ m

2r̄

)4
(dr̄2 + r̄2 d�2). (1.51)

In these coordinates, there is only a singularity at r̄ = 0, which corresponds to
r = 0.

As already indicated at the beginning of this section, several experimental
verifications of general relativity theory rest on the exterior Schwarzschild
solution, namely, to mention only some of the catchwords,

• the gravitational red shift,
• the gravitational deflection of light (→ gravitational lensing),
• the general relativistic perihelion and periastron advance, and
• the time delay of radar pulses (the Shapiro effect).

Using additional structure from Einstein’s theory, more predictions can be
verified:

• the Hulse–Taylor pulsar: emission of gravitational waves,
• the Lense–Thirring effect (see Ciufolini et al [2, 3] and Everitt [6]).

For more details on the experimental verification of Einstein’s theory, see
Will [21].

1.5 Flat Minkowski spacetime, null coordinates, and the
Penrose diagram

In this section, we are going to analyze the Schwarzschild solution, in particular
its singularity structure. For this purpose we will first have a look at null
coordinates. The simplest testing ground in this context is the (flat) Minkowski
space. Its metric, in Cartesian and spherical polar coordinates, reads (c = 1) as

ds2 = −dt2 + dx2 + dy2 + dz2 = −dt2 + dr2 + r2 d�2. (1.52)

We define advanced and retarded null coordinates as follows

v := t + r u := t − r (1.53)
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Figure 1.6. Minkowski spacetime in null coordinates.

and find that

ds2 = −dv du + 1
4 (v − u)2 d�2. (1.54)

In figure 1.6 we show the Minkowski spacetime in terms of the new coordinates.
Incoming photons, i.e. pointlike particles with velocity ṙ = −c = −1, move
on paths with v = constant. Correspondingly, we have for outgoing photons
u = constant. The special relativistic wave equation is solved by any function
f (u) and f (v). The surfaces f (u) = constant and f (v) = constant represent
the wavefronts which evolve with the velocity of light. The trajectory of every
material particle with v < c = 1 has to remain inside the region defined by the
surface r = t . In an (r, t)-diagram this surface is represented by a cone, the so-
called light cone. Any point in the future light cone r = t can be reached by a
particle or signal with a velocity less than c. A given spacetime point P can be
reached by a particle or signal from the spacetime region enclosed by the back
light cone r = −t .

We can map, following Penrose, the infinitely distant points of spacetime
into finite regions by means of a conformal transformation which leaves the light
cones intact. Then we can display the whole infinite Minkowski spacetime on a
(finite) piece of paper. Accordingly, introduce the new coordinates

ṽ := arctan v ũ := arctan u for − π/2 ≤ ṽ, ũ ≤ +π/2. (1.55)



Schwarzschild spacetime and the Penrose–Kruskal diagram 19

Then the metric reads as

ds2 = 1

cos2 ṽ

1

cos2 ũ

[
−d ṽ dũ + 1

4
sin2(ṽ − ũ) d�2

]
. (1.56)

We can go back to time- and spacelike coordinates by means of the transformation

t̃ := ṽ + ũ r̃ := ṽ − ũ (1.57)

see (1.52). Then the metric reads as

ds2 = −dt̃2 + dr̃2 + sin2 r̃ d�2

4 cos2 t̃+r̃
2 cos2 t̃−r̃

2

(1.58)

that is, up to the function in the denominator, it appears as a flat metric. Such a
metric is called conformally flat (it is conformal to a static Einstein cosmos). The
back-transformation to our good old Minkowski coordinates reads:

t = 1

2

(
tan

t̃ + r̃

2
+ tan

t̃ − r̃

2

)
(1.59)

r = 1

2

(
tan

t̃ + r̃

2
− tan

t̃ − r̃

2

)
. (1.60)

Our new coordinates t̃, r̃ extend only over a finite range of values, as can be seen
from (1.59), (1.60). Thus, in the Penrose diagram of a Minkowski spacetime,
see figure 1.7, we can depict the whole Minkowski spacetime, with a coordinate
singularity along r̃ = 0. All trajectories of uniformly moving particles (with
velocity smaller than c) emerge from one single point, past infinity I−, and all
will eventually arrive at the one single point I+, namely at future infinity. All
incoming photons have their origin on the segment �− (script I− or ‘scri minus’),
lightlike past infinity, and will run into the coordinate singularity on the t̃-axis.
All outgoing photons arise from the coordinate singularity and cease on the line
�
+, lightlike future infinity (‘scri plus’). The entire spacelike infinity is mapped

into the single point I 0.
Now, we have a really compact picture of the Minkowski space. Next, we

would like to proceed along similar lines in order to obtain an analogy for the
Schwarzschild spacetime.

1.6 Schwarzschild spacetime and the Penrose–Kruskal
diagram

In relativity, light rays, the quasi-classical trajectories of photons, are null
geodesics. In special relativity, this is quite obvious, since in Minkowski space
the geodesics are straight lines and ‘null’ just means v = c. A more rigorous
argument involves the solution of the Maxwell equations for the vacuum and the
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Figure 1.7. Penrose diagram of Minkowski spacetime.

subsequent determination of the normals to the wave surface (rays) which turn
out to be null geodesics. This remains valid in general relativity. Null geodesics
can be easily obtained by integrating the equation 0 = ds. We find for the
Schwarzschild metric, specializing to radial light rays with dφ = 0 = dθ , that

t = ±
(

r + 2m ln
∣∣∣ r

2m
− 1

∣∣∣)+ constant. (1.61)

If we denote by r0 the solution of the equation r + 2m ln | r
2m − 1| = 0, we have

for the t-coordinate of the light ray t (r0) =: v. Hence, if r = r0, we can use v to
label light rays. In view of this, we introduce v and u1

v := t + r + 2m ln
∣∣∣ r

2m
− 1

∣∣∣ (1.62)

u := t − r − 2m ln
∣∣∣ r

2m
− 1

∣∣∣ . (1.63)

Then ingoing null geodesics are described by v = constant, outgoing ones
by u = constant, see figure 1.8. We define ingoing Eddington–Finkelstein
coordinates by replacing the ‘Schwarzschild time’ t by v. In these coordinates

1 MTW [13] use capital letters, i.e. u → Ũ and v→ Ṽ .
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Figure 1.8. In- and outgoing Eddington–Finkelstein coordinates (where we introduce t ′
with v = t ′ + r , u = t ′ − r ).

(v, r, θ, φ), the metric becomes

ds2 = −
(

1− 2m

r

)
dv2 + 2dv dr + r2 d�2. (1.64)

For radial null geodesics ds2 = dθ = dφ = 0, we find two solutions of
(1.64), namely v = constant and v = 4m ln |r/2m − 1| + 2r + constant.
The first one describes infalling photons, i.e. t increases if r approaches 0. At
r = 2m, there is no longer any singular behavior for incoming photons. However,
for outgoing photons, ingoing Eddington–Finkelstein coordinates are not well
suited. Ingoing Eddington–Finkelstein coordinates are particularly useful for
describing the gravitational collapse. Analogously, for outgoing null geodesics
take (u, r, θ, φ) as the new coordinates. In these outgoing Eddington–Finkelstein
coordinates the metric reads:

ds2 = −
(

1− 2m

r

)
du2 − 2 du dr + r2 d�2. (1.65)

Outgoing light rays are now described by u = constant, ingoing light rays by
u = −(4m ln |r/2m − 1| + 2r)+ constant. In these coordinates, the hypersurface
r = 2m (the ‘horizon’) can be recognized as a null hypersurface (its normal is
null or lightlike) and as a semi-permeable membrane.

Next we try to combine the advantages of in- and outgoing Eddington–
Finkelstein coordinates in the hope of obtaining a fully regular coordinate system
for the Schwarzschild spacetime. Therefore we assume coordinates (u, v, θ, φ).
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Some (computer) algebra yields the corresponding representation of the metric:

ds2 = −
(

1− 2m

r(u, v)

)
du dv + r2(u, v) d�2. (1.66)

Unfortunately, we still have a coordinate singularity at r = 2m. We can get rid of
it by reparametrizing the surfaces u = constant and v = constant via

ṽ = exp
( v

4m

)
ũ = − exp

(
− u

4m

)
. (1.67)

In these coordinates, the metric reads (r = r(ũ, ṽ) is implicitly given by (1.67)
and (1.63), (1.62)):

ds2 = − 4r3
S

r(ũ, ṽ)
exp

(
−r(ũ, ṽ)

2m

)
d ṽ dũ + r2(ũ, ṽ) d�2. (1.68)

Again, we go back from ũ and ṽ to time- and spacelike coordinates:

t̃ := 1
2 (ṽ + ũ) r̃ := 1

2 (ṽ − ũ). (1.69)

In terms of the original Schwarzschild coordinates we have2

r̃ =
√∣∣∣ r

2m
− 1

∣∣∣ exp
( r

4m

)
cosh

t

4m
(1.70)

t̃ =
√∣∣∣ r

2m
− 1

∣∣∣ exp
( r

4m

)
sinh

t

4m
. (1.71)

The Schwarzschild metric

ds2 = 4r3
S

r
exp

(
− r

2m

)
(−dt̃2 + dr̃2)+ r2 d�2 r = r(t̃, r̃ ) (1.72)

in these Kruskal–Szekeres coordinates (t̃, r̃ , θ, φ), behaves regularly at the
gravitational radius r = 2m. If we substitute (1.72) into the Einstein equation (via
computer algebra), then we see that it is a solution of it for all r > 0. Equations
(1.70), (1.71) yield

r̃2 − t̃2 =
∣∣∣ r

2m
− 1

∣∣∣ exp
( r

2m

)
. (1.73)

Thus, the transformation is only valid for regions with |r̃ | > t̃ . However, we can
find a set of transformations which cover the entire (t̃ , r̃ )-space. They are valid in
different domains, indicated here by I, II, III, and IV, to be explained later:

(I)


t̃ =

√
r

2m
− 1 exp

( r

4m

)
sinh

t

4m

r̃ =
√

r

2m
− 1 exp

( r

4m

)
cosh

t

4m

(1.74)

2 MTW [13] use v instead of t̃ and u instead of r̃ .
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(II)


t̃ =

√
1− r

2m
exp

( r

4m

)
cosh

t

4m

r̃ =
√

1− r

2m
exp

( r

4m

)
sinh

t

4m

(1.75)

(III)


t̃ = −

√
r

2m
− 1 exp

( r

4m

)
sinh

t

4m

r̃ = −
√

r

2m
− 1 exp

( r

4m

)
cosh

t

4m

(1.76)

(IV)


t̃ = −

√
1− r

2m
exp

( r

4m

)
cosh

t

4m

r̃ = −
√

1− r

2m
exp

( r

4m

)
sinh

t

4m
.

(1.77)

The inverse transformation is given by( r

2m
− 1

)
exp

( r

2m

)
= r̃2 − t̃ 2 (1.78)

t

4m
=
{

artanh t̃/r̃ for (I) and (III)

artanh r̃/t̃ for (II) and (IV).
(1.79)

The Kruskal–Szekeres coordinates (t̃, r̃ , θ, φ) cover the entire spacetime (see
figure 1.9). By means of the transformation equations we recognize that we
need two Schwarzschild coordinate systems in order to cover the same domain.
Regions (I) and (III) both correspond each to an asymptotically flat universe with
r > 2m. Regions (II) and (IV) represent two regions with r < 2m. Since t̃ is
a time coordinate, we see that the regions are time reversed with respect to each
other. Within these regions, real physical singularities (corresponding to r = 0)
move along the lines t̃2 − r̃2 = 1. From the form of the metric we can infer that
the lightlike geodesics (and therewith the light cones ds = 0) are lines with slope
1/2. This makes the discussion of the causal structure particularly simple.

Finally, we would like to represent the Schwarzschild spacetime in a manner
analogous to the Penrose diagram of the Minkowski spacetime. To this end, we
proceed along the same line as in the Minkowskian case. First, we again switch to
null coordinates v′ = t̃+r̃ and u′ = t̃−r̃ and perform a conformal transformation
which maps infinity into the finite (again, by means of the tangent function).
Finally we return to a timelike coordinate t̂ and a spacelike coordinate r̂ . We
perform these transformations all in one go:

t̃ + r̃ = tan
t̂ + r̂

2
(1.80)

t̃ − r̃ = tan
t̂ − r̂

2
. (1.81)
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Figure 1.9. Kruskal-Szekeres diagram of the Schwarzschild spacetime.

The Schwarzschild metric then reads:

ds2 = r3
S

r(r̂ , t̂)

exp
(
− r(r̂ ,t̂)

2m

)
(−dt̂2 + dr̂2)

cos2 t̂+r̂
2 cos2 t̂−r̂

2

+ r2(t̂, r̂) d�2 (1.82)

where the function r(t̂, r̂) is implicitly given by

( r

2m
− 1

)
exp

( r

2m

)
= tan

t̂ + r̂

2
tan

t̂ − r̂

2
. (1.83)

The corresponding Penrose–Kruskal diagram is displayed in figure 1.10.
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Figure 1.10. Penrose–Kruskal diagram of the Schwarzschild spacetime.

1.7 The interior Schwarzschild solution and the TOV
equation

In the previous section we investigated the gravitational field outside a spherically
symmetric mass distribution. Now it is time to have a look inside matter, see Adler
et al [1]. Of course, in a first attempt, we have to make decisive simplifications
on the internal structure of a star. We will consider cold catalyzed stellar material
during the later phase of its evolution which can be reasonably approximated by
a perfect fluid. The typical mass densities are in the range of≈107 g cm−3 (white
dwarfs) or ≈1014 g cm−3 (neutron stars, i.e. pulsars). In this context we assume
vanishing angular momentum.

We start again from a static and spherically symmetric metric

ds2 = −eA(r)c2 dt2 + eB(r) dr2 + r2 d�2 (1.84)

and the energy–momentum tensor

Tµν =
(
ρ + p

c2

)
uµuν + pgµν (1.85)

where ρ = ρ(r) is the spherically symmetric mass density and p = p(r) the
pressure (isotropic stress). This has to be supplemented by the equation of state
which, for a simple fluid, has the form p = p(ρ).

We compute the non-vanishing components of the field equation by means
of computer algebra as (here ()′ = d/dr )

−eBκr2c2ρ + eB + B ′r − 1 = 0 (1.86)



26 The Schwarzschild black hole: a general relativistic introduction

−eBκpr2 − eB + A′r + 1 = 0 (1.87)

−4eBκpr + 2A′′r + (A′)2r − A′B ′r + 2A′ − 2B ′ = 0. (1.88)

The (φ, φ)-component turns out to be equivalent to the (θ, θ)-component. For
convenience, we define a mass function m(r) according to

e−B =: 1− 2m(r)

r
. (1.89)

We can differentiate (1.89) with respect to r and find, after substituting
(1.86), a differential equation for m(r) which can be integrated, provided ρ(r)
is assumed to be known:

m(r) =
∫ r

0

κ

2
ρ(ξ)c2ξ2 dξ. (1.90)

Differentiating (1.87) and using all three components of the field equation, we
obtain a differential equation for A:

A′ = − 2 p′

p + ρc2 . (1.91)

We can derive an alternative representation of A′ by substituting (1.89) into (1.87).
Then, together with (1.91), we arrive at the Tolman–Oppenheimer–Volkoff (TOV)
equation

p′ = − (ρc2 + p)(m+ κpr3/2)

r(r− 2m)
. (1.92)

The Newtonian terms are denoted by boldface letters. The system of equations
consisting of (1.90), (1.91), the TOV equation (1.92), and the equation of
state p = p(ρ) forms a complete set of equations for the unknown functions
A(r), ρ(r), p(r), and m(r), with

ds2 = −eA(r)c2 dt2 + dr2

1− 2m(r)
r

+ r2 d�2. (1.93)

These differential equations have to be supplemented by initial conditions.
In the center of the star, there is, of course, no enclosed mass. Hence we

demand m(0) = 0. The density has to be finite at the origin, i.e. ρ(0) = ρc, where
ρc is the density of the central region. At the surfaces of the star, at r = R�, we
have to match matter with vacuum. In vacuum, there is no pressure which requires
p(R�) = 0. Moreover, the mass function should then yield the total mass of the
star, m(R�) = M . Finally, we have to match the components of the metric.
Therefore, we have to demand exp[A(R�)] = 1− 2m(R�)/R�.

Equations (1.86), (1.87), (1.88) and certain regularity conditions which
generalize our boundary conditions, i.e.
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• the regularity of the geometry at the origin,
• the finiteness of the central pressure and density,
• the positivity of the central pressure and density,
• the positivity of the pressure and density,
• the monotonic decrease in pressure and density,

impose conditions on the functions ρ and p. Then, even without explicit
knowledge of the equation of state, the general form of the metric can be
determined. For most recent work, see Rahman and Visser [16] and the literature
given there.

We can obtain a simple solution, if we assume a constant mass density

ρ = ρ(r) = constant. (1.94)

One should mention here that ρ is not the physically observable fluid density,
which results from an appropriate projection of the energy–momentum tensor
into the reference frame of an observer. Thus, this model is not as unphysical as
it may look at first. However, there are serious but more subtle objections which
we will not discuss further in this context.

When ρ = constant, we can immediately integrate (1.89) and thus obtain the
metric component exp(B). Also (1.91) can be integrated. Then, after some more
elementary integrations, we can make use of the boundary conditions. Finally,
we arrive at the interior and exterior Schwarzschild solution for a spherically
symmetric body [20]:

ds2 =



−
3

2

√
1− R2�

R̂2
− 1

2

√
1− r2

R̂2

2

c2 dt2

+ 1

1− r2

R̂2

dr2 + r2 d�2 r ≤ R�

−
(

1− 2m

r

)
c2 dt2 + 1

1− 2m
r

dr2 + r2 d�2 r > R�

(1.95)

with

R̂ :=
√

3

κρc2
ρ = constant. (1.96)

For the sun we have M� ≈ 2 × 1030 kg, R� ≈ 7 × 108 m and subsequently
ρ� ≈ 1.4×103 kg m−3. This leads to R̂ ≈ 3×1011, i.e. the radius of the star R�
is much smaller than R̂: R� < R̂. Hence the square roots in (1.95) remain real.

Visualization and comparison with a ‘Newtonian’ star

From the continuous matching of the grr -component we can derive the relation
1 − 2m/R� = 1 − R2�/R̂2. Together with the definition of the Schwarzschild
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radius we find for the total gravitating mass of the star

M = 4π

3
R3�ρ. (1.97)

Another method for obtaining the total mass is to multiply the density ρ by the
spatial volume of the star at a given time t0. However, the total mass calculated
that way is larger than the total gravitating mass (1.97). This is due to the fact
that not mass (that is ‘rest mass’) alone but mass-energy gravitates. The negative
gravitational binding forces thus contribute to the gravitating mass which appears
in the metric.

Finally, some words about the geometry of the Schwarzschild spacetime.
We can visualize its structure by means of an embedding in the following way:
In the equatorial plane ϑ = π/2 at a prescribed time t = t0, the metric reads
(R̂2 = R3�/2m):

ds2 =



(
1− 2mr2

R3�

)−1

dr2 + r2 dϕ2 for r ≤ R�

(
1− 2m

r

)−1

dr2 + r2 dϕ2 for r > R�.

(1.98)

These metrics are equivalent to 2D metrics induced by the 3D Euclidean metric
on a sphere or a hyperboloid, respectively. The 3D Euclidean metric is ds2 =
dr2 + r2 dφ2 + dz2. A surface rotationally symmetric around the z-axis is
described by a parametrization z = z(r). The metric induced on this surface
is ds2 = [1+ (dz/dr)2] dr2+ r2 dφ2. By comparison with the previous metrics,
we extract differential equations for z(r) which can be easily solved. At r = R�,
the surfaces are continuously joined (see figure 1.11).

Outside, we have the usual vacuum Schwarzschild geometry which was
discussed extensively in the previous section. We may add a few remarks.
Obviously, a circle (or sphere, respectively) around the origin has a circumference
of 2πr , where r is the radial Schwarzschild coordinate. We also observe that the
proper distance measured by a freely falling observer (who, in our picture, moves
radially on the hyperboloid) is larger than the coordinate distance �r . Inside the
star we have the three-geometry of a sphere with radius R̂. Far away from the star
we find flat Euclidean geometry.

The structure of this three-geometry resembles the Newtonian case. Inside,
we have a conformally flat space, where the Weyl (‘trace-free part of the
curvature’) vanishes and the Ricci tensor is proportional to the mass-energy
density. In the Newtonian case, the trace of the tidal matrix (the analogy to
curvature) is proportional to the mass density, and, subsequently, its trace-free
part vanishes. Outside, in vacuum, it is the other way around. There the trace
parts are zero (Kaa = 0 and Ricαβ = 0 = R). The Newtonian tidal acceleration
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Figure 1.11. Geometry of Schwarzschild spacetime.

matrix is trace free and reads (in Cartesian coordinates, assume r = (0, 0, r)):

Kab
∗= GM

r3
diag(1, 1,−2). (1.99)

In Einstein’s theory we have to use the equation for the geodesic deviation (1.39)
in order to calculate the relative acceleration of two freely falling test particles.
For the comoving observer, with uα = (c, 0, 0, 0) and in an orthonormal frame,
we find

v̈µ
∗= c2 Rµ0ν0v

ν = GM

r3 diag(1, 1,−2)(v1, v2, v3). (1.100)

Thus, in a special frame, we have the same tidal accelerations as in the Newtonian
case.

Accordingly, the gravitational field of a spherically symmetric body in
Newton’s 3D theory is very naturally embedded into Einstein’s 4D theory.

1.8 Computer algebra

As a typical example, we will demonstrate how to obtain the exterior
Schwarzschild solution by means of the computer algebra system Reduce and its
package Excalc for applications in differential geometry. When Reduce is called,
it prompts the user for input. Each statement has to be terminated by a semicolon
(output is displayed) or by a dollar sign (output is suppressed). After pressing
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the return-key, the computer (hopefully) will produce a result. So let us start by
loading the package Excalc:

load excalc ;

Then we define the metric. Therefore we first introduce the functions ν and λ
which enter the ansatz for the metric

pform{nu,lamb}=0;

and declare which variables they depend on:

fdomain nu = nu(r,t), lamb=lamb(r,t) ;

Subsequently, we define coframe and metric:

coframe o(t) = d t ,
o(r) = d r ,
o(theta) = d theta ,
o(phi) = d phi

with metric g = - exp(nu) * o(t) * o(t)
+ exp(lamb) * o(r) * o(r)
+ r**2 * o(theta) * o(theta)
+ r**2 *sin(theta)**2 * o(phi) * o(phi) ;

Excalc is a package designed to perform calculations with exterior differential
forms. It is convenient to compute partial derivatives of scalar functions as
follows.

∂αφ = eα� dφ = eα�(∂αφ dxα) (1.101)

where we have introduced the vector basis eα dual to the coframe, i.e. eα� dxβ =
δαβ (� is the interior product sign). Accordingly, we compute the vector basis

frame e ;

and define the Christoffel symbol

pform chris(i,j,k) = 0 ;
index_symmetries chris(i,j,k): symmetric in {j,k} ;

chris(-i,-j,-k) := (1/2) * ( e(-k)_|d g(-i,-j)
+ e(-j)_|d g(-i,-k)
- e(-i)_|d g(-j,-k) );

Next, we compute the Riemannian curvature tensor. By means of the declaration
index symmetries, we can explicitly implement the index symmetries of
tensors, which saves a lot of memory and computation time. Moreover, the printed
output then encompasses automatically only independent components.

pform riem(i,j,k,l) = 0;
index_symmetries riem(i,j,k,l): antisymmetric in {i,j},{k,l}
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symmetric in {{i,j},{k,l}} ;

riem(i,-j,-k,-l) := e(-k)_|d chris(i,-j,-l)
- e(-l)_|d chris(i,-j,-k)
+ chris(i,-m,-k) * chris(m,-j,-l)
- chris(i,-m,-l) * chris(m,-j,-k) ;

Then, we introduce the Ricci tensor, curvature scalar, and Einstein tensor.

pform ricci(i,j)=0 ;
ricci(-i,-j) := riem(k,-i,-k,-j) ;

pform rscalar = 0;
rscalar := ricci(-i,i) ;

pform einstein(i,j) = 0 ;
einstein(i,j) := ricci(i,j) - (1/2) * rscalar * g(i,j) ;

Now we implement the vacuum field equation:

pform zero(i,j) = 0 ;
zero(i,j) := einstein(i,j) + kosmo * g(i,j) ;

The next step is to look at the output and to get some ideas of how to
proceed. . . With a computer algebra system, we can very easily manipulate
systems of equations in order to obtain new, simpler equations. By entering (num
yields the numerator of a fraction):

0 = num(zero(t,t)) + num(zero(r,r)) ;

we get
0 = ∂rλr + ∂rνr. (1.102)

Accordingly, the sum f := λ+ν has to be independent of r and thus is a function
of t alone. Then we can perform a rescaling of the time coordinate

t −→ t ′ =
∫

dt e f (t)/2 (1.103)

such that
dt ′ = e f (t)/2 dt . (1.104)

Hence, the ansatz for the metric does not change, apart from the (t, t)-component

eν(r,t) dt2 = eν(r,t
′)− f (t ′) dt ′2 =: eν

′
dt ′2 (1.105)

or
ν = ν′ + f (t). (1.106)

Thus,
λ = −ν′. (1.107)
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Eventually, we can put

lamb := - nu ;

and suppress the prime from now on. Next, we note that

0 = zero(r,t) = ∂tν

r
. (1.108)

Consequently, the function ν cannot depend on t . We take this into account with

@(nu,t) := 0 ;

For convenience, we get rid of the exp-functions:

pform psi = 0 ;
fdomain psi = psi(r) ;
nu := log(psi) ;

zero(i,j) := zero(i,j);

The (r, r)-component of the field equation can be solved for ∂rψ . We can do this
with the computer by means of the solve operator

solve(zero(r,r)=0,@(psi,r)) ;

We then substitute the result into the field equation

@(psi,r) := ( - psi + 1 - kosmo*r**2)/r;

It turns out that all components of the field equation are already fulfilled. The task
of solving the ordinary differential equation remains:

∂rψ + ψ
r
− 1

r
+�r = 0. (1.109)

This may be done by means of an appropriate package, like the Reduce package
odesolve.

load odesolve ;
odesolve(df(psi,r)-@(psi,r),psi,r) ;

By setting the integration constant to −2m, we finally arrive at

ψ = 1− 2m

r
− �

3
r2. (1.110)
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[19] Schwarzschild K 1916 Über das Gravitationsfeld eines Massenpunktes nach der
Einsteinschen Theorie Sitzungsber. Preuss. Akad. Wiss. Berlin 189–96
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Chapter 2

The Milky Way: structure, constituents and
evolution

Susanne Hüttemeister
Ruhr-Universität Bochum, Germany

After having learned, in chapter 1, about an idealized relativistic star, we now turn
to the Milky Way which consists of about 1011 stars and has a diameter of about
105 light years. The historical and current developments in our understanding of
the Milky Way are described, based mainly on observations which are becoming
increasingly accurate. The evolution and formation of galaxies in a cosmological
context is also discussed as well as the relation of their properties to their central
black hole. The black hole at the center of the Milky Way—among all galaxies the
best studied case—will be the focus of our considerations in subsequent chapters.

2.1 The overall structure of the Milky Way

2.1.1 Deducing the large-scale structure of the Galaxy

When viewed on a moonless night from a place far away from the pollution of
city light, the ‘band’ of the Milky Way stands out clearly and in great detail.
With binoculars, a small telescope or even the naked eye we may discern not
only numerous individual stars, but also star clusters, gas nebulae shining red in
the light of ionized hydrogen (H II regions), dust lanes, some of which break up
into fine filaments, and dark clouds. Comparing the view from the northern and
southern hemispheres, we find that the density of stars, clusters but also that of
dark clouds is highest toward the constellations Sagittarius and Scorpius. With our
present-day knowledge about Galactic structure, it is quite possible to visualize
our place within the disk of the Milky Way and even to get some feeling of being
located within a three-dimensional structure. However, it is also clear that we
are at some disadvantage when trying to deduce the true structure of the Milky

35
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Way, due to our viewpoint inside it, resulting in an ‘edge-on’ viewing geometry
imposed by the location of the Sun within the Galactic Disk.

Indeed, while our understanding of the general appearance of the Milky Way
has made great progress over the last century, progress which has become—as for
almost all other astronomical phenomena—ever faster in recent decades, there
are still considerable blanks to fill in. The Galactic Center itself as well as the
far side of the Milky Way, beyond the center, are almost entirely inaccessible to
optical astronomy, making research on the Galactic Center region and, to some
degree, on large-scale Galactic structure a domain for other wavelength ranges.
Of these, only the radio and part of the infrared domain are accessible to ground-
based telescopes, and even for these, much of the necessary technology has only
been developed recently.

Sometimes, it seems easier to discern the structure of external galaxies than
that of our own Milky Way, at least on a large scale that does not require high
resolution. A number of external galaxies have indeed been put forward as
‘templates’ for the Milky Way. NGC 891 or NGC 4565 may present us with
an edge-on view of the Milky Way (e.g. van der Kruit 1984), while NGC 1232
(Möllenhoff et al 1999, see figure 2.1) may look similar to our own galaxy when
seen face-on. Several components or constituents (which we will examine more
closely in later sections) are seen readily in these external galaxies: in face-on
views, spiral arms, inter-arm regions and integral color changes when moving
in from the disk to the central region are obvious, while edge-on views show the
thinness of the disk, with an even thinner dust lane cutting through its central part,
as well as the oval bulge region in the center.

However, studying external galaxies does not really solve the problem of the
structure of our Galaxy: there are many types of galaxy, presumably in many
evolutionary stages, and even within one class, e.g. spiral galaxies, the members
show a great variety of more or less obvious differences. In fact, no two galaxies
are exactly alike. Thus, using external galaxies as Milky Way templates requires
much knowledge about the structure of the Milky Way just to select the right
galaxies for companion. Ideally, high-resolution studies of the constituents of the
Milky Way and, by necessity, lower-resolution work on (many) external galaxies
should and can complement each other, shedding light on the more general
problems of galactic structure and evolution. However, to solve specific questions
on the structure of the Milky Way as a unique object, we have little choice but
to turn to our Galaxy itself and try to overcome the problems due to our position
within it.

2.1.2 Unveiling Galactic structure: history

The awareness that the main constituents of the Milky Way are stars came with
the invention of the telescope. Galilei stated in 1610 that ‘—the Galaxy is nothing
else but a mass of innumerable stars planted together in clusters—’ (quoted from
Weaver 1975; the material in this section is largely adapted from his articles
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Figure 2.1. The famous ESO VLT image of NGC 1232, a possibly Milky Way template
galaxy.

(Weaver 1975a, b) and Hoskin (1985)). The shape and configuration of the stars
proved, however, difficult to determine.

In 1750, Wright published what is widely regarded as the first disklike
picture of the Milky Way. A plate in his ‘An Original Theory or New Hypothesis
of the Universe’ depicts what appears to be a stellar disk, with the sun within it
and lines-of-sight drawn across that clearly and correctly explain why the Milky
Way is perceived as a bright band—we see many more stars when we look along
a line-of-sight within the disk than when we look perpendicularly to the plane of
the disk. However, Wright’s view only seems ‘modern’: he thought of the ‘disk’
as part of a very large spherical shell, with a radius so large that the curvature was
hardly perceptible. In the center of the sphere was ‘Heaven, the Abode of God’,
while Wright assumed the far side to be ‘the Shades of Darkness and Dispare,
the Desolate Regions of ye Damned’. This certainly appears to be a rather
unconventional view of both the Galactic Center and extragalactic space from
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a modern perspective, but Wright was indeed the first to assume that the Sun was
rotating around some central object. However, Wright, and his contemporaries,
while trying to develop world views consistent with observations, did so with
philosophical or theological reasoning rather than experiments. Thus, the insights
they arrived at belong to the realm of natural philosophy more than empirical
science.

Kant knew of Wright’s ideas, and took them one step further. In his
‘Allgemeine Naturgeschichte und Theorie des Himmels’ (1755), he arrived at a
‘true’ disk picture, extending the hierarchical structure by deducing the existence
of ‘Welteninseln’ or ‘Island Universes’—external galaxies.

The viewpoint of natural philosophy was changed fundamentally to one
of empirical science when W Herschel, telescope builder and tireless observer,
introduced not only observational but also statistical methods into the study of
Galactic structure. He and his sister performed star counts for many lines-of-sight
along a great circle, and, inventing the methodology of stellar statistics for this
purpose, arrived at a picture of the Milky Way as a flattened, irregularly shaped
object with the Sun close to the center. Herschel had to make two assumptions
both of which later proved to be incorrect: he assumed an identical space density
for the stars everywhere within the Milky Way and that stellar brightness was
roughly indicative of distance, allowing his telescope to reach the edge of the
system.

Herschel himself realized later in life that these assumptions were flawed,
but his and other models based on this method were reproduced and refined for
many decades after his death. In 1922, Kapteyn published a summary of all
these efforts: his ‘Kapteyn Universe’ showed a circular, lens-shaped galaxy about
15 kpc in size, with the Sun again close to the center.

Even before Kapteyn’s model was published, it was under what proved later
to be a decisive attack. In 1915, Shapley had started to pin down the location of
globular clusters, the distances of which he could determine by a method based on
variable stars (Shapley 1918). Globular clusters are (today) known to be old halo
objects and their distribution is not confined to the disk of the Galaxy. Thus they
can be seen optically at very large distances. Shapley found that the center of the
globular cluster system was located outside the Kapteyn Milky Way, a situation
that is dynamically impossible. Thus, he arrived at a picture of a Galaxy that was
much larger than before (in fact, too large), with the Sun relegated to a position
closer to the edge than to the center.

Uncertainty about the nature of the spiral nebulae added to a confusing
situation: while most of the supporters of a Kapteyn-like universe believed that
nebulae like M 31 or M 51 were galaxies similar to our own, from the beginning
of measurements of radial motions and the detection of novae in spirals, partisans
of Shapley’s view held to the opinion that spiral nebulae were part of the larger
Milky Way. The ‘new star’ S Andromedae in M 31 seemed to support their view,
being inexplicably bright if located in another galaxy. Another complication was
the alleged measurement of rotation in spirals on photographic plates, by van
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Maanen, known to be a meticulous observer. While van Maanen’s error was never
quite explained, S Andromedae turned out to be a supernova, intrinsically much
brighter than any ‘new star’ observed before.

Shapley and Curtis, an adherent of a small (Kapteyn) Galaxy and the
extragalactic nature of spirals, met in a ‘Great Debate’ in Washington in 1920,
where arguments were exchanged, and no resolution reached. In hindsight, we
know that the views of both groups were partly true: Shapley’s assessment of the
size of the Milky Way and the Sun’s location was close to being correct, while the
spiral nebulae are indeed external galaxies.

This question was settled only a few years later, when Hubble found Cepheid
variables in spiral nebulae, determining their distances, and—a little later—their
general recession, which later became famous as the ‘Hubble law’ of galaxy
redshift. Oort was the first to analyze Galactic rotation in 1927, finding a position
for the center that roughly agreed with Shapley’s determination.

Finally, in 1930 the reason for much of the disagreement and confusion
became clear when Trümpler demonstrated the existence of Galactic extinction
in his investigations of photometric distances, linear scales and reddening of
Galactic open clusters. Thus, an absorbing dust component for the interstellar
medium (ISM) was established as an important constituent of the Milky Way,
even in regions where its presence was not obvious as dark clouds or filaments.
These were only now realized to be absorbing layers of material, and not starless
voids or ‘holes in the sky’ (as the astrophotography pioneer E E Barnard thought).
It became clear that in the optical wavelength range our view is limited to a few
kpc, and the Galactic structure at large cannot be inferred from star counts (though
the local disk structure can still be investigated by stellar statistics).

For this reason the center of the Milky Way, as officially adopted by the
International Astronomical Union in 1959 as the origin for the Galactic coordinate
system, was eventually based on the detection of strong radio emission from the
nucleus of our Galaxy (Piddington and Minnett 1951).

2.1.3 ‘External’ views

More than seven decades later, data from many wavelength ranges, many of
which penetrate the layer of dust extinction, are at our disposal to derive Galactic
structure. Still, all our direct observational views are (and will remain for the
indefinite future) internal and edge-on, with all the associated problems. By
now, they cover the entire electromagnetic spectrum. This includes the radio
regime, where we encounter non-thermal synchrotron emission from relativistic
electrons at long cm wavelengths, emission from neutral atomic hydrogen at
21 cm and molecules, most prominently CO, which are used to trace the
molecular gas component, at mm wavelengths. The far and mid-infrared region
is dominated by thermal dust emission, while in the near infrared (NIR) we
encounter emission from low mass, cool stars. The optical and UV bands
are most affected by interstellar extinction, limiting our view to nearby stars,
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Draft of the ‘Berlin Milky Way’

Figure 2.2. Draft of the ‘external view’ of the Milky Way developed by the author and
E Janssen for the exhibition ‘Seven Hills’ in Berlin (2000).

dust clouds and H II regions. X-rays, only accessible to satellite observatories,
provide information on the hot component of the ISM, while the highest energy
γ -rays mostly arise in collisions of cosmic rays with hydrogen atoms (see
nvo.gsfc.nasa.gov/mw/milkyway.html for multiwavelength views of the Galaxy).

It is our task to piece together a coherent picture of Galactic structure based
on these diverse sources of information on the different constituents of the Galaxy.
A view of the Milky Way as it might appear to an external observer is necessarily
an artist’s conception, and partially based on (hopefully) educated guesses. Two
attempts have been made: J Lomberg’s painting at the National Air and Space
Museum in Washington and a view of the Milky Way (figure 2.2) put together
by the author and the artist E Janssen (European Southern Observatory) for the
exhibition ‘Seven Hills—Images and Perspectives for the 21st Century’ in Berlin
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(2000). Both images are based on the available data. Lomberg’s view focused
on the Sun and its fairly well-known surroundings, thus the unknown details on
the far side of the Galaxy are suitably blurred with distance. The ‘Berlin’ Milky
Way is shown face-on, thus we had to invent a likely structure on the far side; we
settled on an overall shape for the spiral structure, for which we chose a model
with four main spiral arms, in accordance with most (but not all) the evidence.

We will examine the main constituents in more detail later, but will
familiarize ourselves with the main components of the large-scale Galactic
structure at this point: external views are dominated by the distinct constituents
of the disk and specifically the spiral arms: young massive blue stars, reddish H II
regions as the sites of stars still in the process of ionizing and dissolving their birth
cloud, young clusters and dust lanes and filaments, the cradles of ongoing star
formation. The disk has a diameter ≤ 30 kpc (but no sharp edge), a thickness of
at most 1 kpc (depending on population), and its surface brightness falls roughly
exponentially, with a scale length of 2.2–2.8 kpc. The Sun is at a distance of
∼8 kpc (7–8.5 kpc) from the center. In the vicinity of the Sun, the surface mass
density is �tot = (71±6) M� pc−2, a fairly certain value confirmed by a number
of investigations (Kuijken and Gilmore 1991, Olling and Merrifield 2001). The
volume density in the disk is far less certain: values range from ρtot = 0.11
to 0.076 M� pc−3 (Crezé et al 1998, Holmberg and Flynn 2000). The stellar
surface density close to the Solar circle is in the range �∗ = (25–50) M� pc−2.
Correspondingly, the local surface density of dark matter is only very poorly
known; it is estimated at �DM = (10–35) M� pc−2. There is some indication
of a stellar warp in the disk, and stronger evidence for a warped distribution of
dust and gas.

A weak bar (or triaxial bulge) of diameter∼3 kpc is seen in the inner part of
the Galaxy, and the general color changes from whitish blue in the disk region to
orange or reddish in the bulge, indicative of a change in stellar population from
a mix dominated, at least in luminosity, by young stars to a population made up
mostly of older stars.

Beyond and above the Galactic disk extends the tenuous halo with its
scattered old stars and globular clusters, the density of which is, however, strongly
concentrated toward the center, and which, in addition, shows substructure and
subpopulations (e.g. Zinn 1985, Burkert and Smith 1997). Dark matter, likely to
be a very important halo component and decisive in structure formation scenarios,
remains enigmatic, even though it is thought to dominate the overall mass budget
of the Galaxy.

The Sun is located within a structure that is sometimes called the ‘Orion
Arm’, but would better be named the ‘Orion Spur’. Evidence points to it not being
a real spiral arm, but a short protrusion, as seen frequently in images of external
galaxies. We may be fortunate not to be positioned in the midst of a ‘real’ spiral
arm: while spiral galaxies, seen face-on, are largely transparent (Xilouris et al
1999, Bosma et al 1992), the enhanced opacity caused by local dust clouds likely
to be encountered in a strong spiral arm might have limited the region of the Milky
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Way accessible to optical studies still further. It might even have rendered many or
all external galaxies invisible in the optical wavelength range, greatly expanding
the galactic ‘zone of avoidance’ and delaying the development of extragalactic
astronomy to a time where measurements of extinction-free tracers were possible,
thus profoundly changing the history of our view of the cosmos and the Galaxy
retold briefly in previous sections.

2.2 The constituents

In this section, we will examine the constituents of the Galaxy and try to assemble
a picture of the Milky Way. The main features of this view are valid not only for
the Milky Way, but for disk galaxies in general.

2.2.1 The Galactic rotation curve

The overall rotation of the Milky Way can only be derived if the movement of
objects that closely trace the rotation of the disk can be analyzed throughout the
Milky Way. Thus, an extinction-free tracer that is part of the disk (not the halo)
is needed. Radioastronomical observations of neutral atomic or molecular gas
clouds provide us with such a tracer.

If we assume that a gas cloud moves on a circular orbit around the Galactic
Center, the ‘Galactic Structure Equation’ can be derived:

Vobs = R0

(
Vr

Rr
− V0

R0

)
sin l.

Here, Vobs is the observed radial velocity, Vr is the velocity at distance r , V0 is the
orbital velocity of the Sun, Rr denotes the distance from the Galactic Center of a
cloud at distance r from the Sun, R0 is the distance of the Sun from the Galactic
Center and l is the Galactic longitude of the cloud at r . We have V0 ≈ 220 km s−1

and R0 ≈ 8 kpc. The radial velocity of the gas cloud can be observed readily
and with high precision from spectral lines, e.g. the 21 cm hyperfine structure
transition of H I or the 2.6 mm J = 1 → 0 rotational transition of the CO
molecule.

From the Galactic structure equation we expect Vobs = Vobs(l) to be a family
of sine curves. If this relation is plotted in a ‘longitude–velocity diagram’ (e.g.
Burton 1895, Hartmann and Burton 1997 for H I, based on the Leiden–Dwingeloo
Survey of neutral hydrogen or Dame et al 2001 for molecular gas), the expected
behavior is indeed seen to a good approximation, with the exception of the region
close to the Galactic Center, where the assumption of circular orbits breaks down
(see section 2.2.4).

The rotation curve of the Galaxy, i.e. Vrot = Vrot(R), can be derived by
considering a special case of the Galactic structure equation, using the classical
tangent point method. If a cloud is located at the tangent point of the line of
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Olling & Merrifield  2000

Figure 2.3. A recent Galactic rotation curve (from Olling and Merrifield 2000). In
general, the rotation curve can be described as flat; the slight rise in the outer part is model
dependent and changes with, e.g., the assumed distance of the Sun to the Galactic Center.
A possible deconvolution into components is given: long dashes, dark matter halo; filled
circles, stellar disk; short dashes, bulge; open circles, molecular gas; and crosses, neutral
hydrogen.

sight to a (circular) orbit around the Galactic Center, its entire orbital velocity
will appear radial. For all realistic mass distributions, this results in the observed
‘tangential’ velocity being the highest velocity seen in a given spectrum, a
quantity that is easy to determine. Then, we have

Vobs,tang = V (Rtang)− V (R0) sin l.

The distance Rtang of the tangent point from the Galactic Center is easily
calculated as Rtang = R0 sin l. Thus, the rotation curve can be constructed, at
least for R < R0, i.e. within the Solar circle.

In detail, a more careful analysis of non-circular contributions and the used
position of the gas clouds is, of course, necessary, since there is not necessarily a
gas cloud at any tangent point and non-circular motions, e.g. streaming motions
in spiral arms, certainly exist (e.g. Malhotra 1995). The method breaks down in a
region within the influence of the bar, i.e. in the inner 2–3 kpc.

Clearly, outside the Solar circle, a tangent point no longer exists. Thus, only
Vr/Rr can be determined from the radial velocities. Distances have to be derived
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in some other way and are often inaccurate. The difference in error bars between
the rotation curve inside and outside the Solar circle is striking (e.g. Olling and
Merrifield 2000). Still, all determinations of the rotation of the Milky Way disk
agree in one basic fact: after a brief, solid-body-like rise out to r ∼ 2–3 kpc, the
rotation curve of the Galaxy is flat out to r > 20 kpc, reaching a maximum value
which is obviously close to the Solar rotation velocity, 220 km s−1. Dehnen and
Binney (1998) argue that a really flat rotation can only be derived if the distance
of the Sun to the Galactic Center is ≤7.5 kpc. Otherwise, the rotation curve rises
slightly.

The measured rotation curve can be decomposed into contributions due to the
various constituents of the Galaxy, most importantly the bulge, the stellar disk, a
(neutral and molecular) gas layer and the (dark) halo. Often, a ‘maximum disk’,
i.e. a solution assigning the maximum possible mass to the stellar disk, based on
the M/L ratio, is assumed. Even in this case, the only feasible models require a
dark halo that dominates the mass budget in the outer part of the Galaxy, roughly
outside the Solar circle. A recent example of a possible Galactic rotation curve
and its deconvolution is given in figure 2.3.

Flat or even slightly rising rotation curves are a universal phenomenon for
disk galaxies. Often, they can be more easily determined, based on H I emission,
for external galaxies than for the Milky Way. Consequently, a large number
has been measured, often to radii well outside the optical disk, since the neutral
hydrogen, in many cases, extends beyond the stellar disk (e.g. Bosma 1981, Sofue
1996, 1997). All disk rotation curves without exception seem to be flat out to the
limits of observability. The only difference between various Hubble types, i.e.
spiral galaxies with more or less pronounced bulges, seems to be that ‘earlier’
Hubble types, Sa and Sb galaxies with stronger bulges, tend to reach a somewhat
higher plateau value than later Hubble types (Sc and Sd spirals, Rubin et al 1985).

This is the main argument for the universal need for dark matter on galactic
scales, a need that seems compelling, as long as one does not want to resort to
modifications to the law of gravity (MOND—Modified Newtonian Dynamics—
theories, Milgrom 1983 and many subsequent papers) which seem, however, ad
hoc and unconvincing from a theoretical point of view. Dark matter is also needed,
for other reasons, on the larger scale of clusters of galaxies.

A rotation curve is, of course, a global, azimuthally averaged, property of a
galaxy. Some hints of the details exist, e.g. in the small ‘wiggles’ visible in many
rotation curves, pointing to streaming motions due to the influence of spiral arms.
However, such details dominate the visual appearance of spiral galaxies like the
Milky Way.

2.2.2 The disk: spiral arms and their tracers

Theoretically, we can understand spiral arms as compression regions triggered
by density waves, which may be either self-excited (Lin and Shu 1964, Lin et al
1969) or due to interaction with a companion galaxy, e.g. by swing amplification
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of an external perturbation (Toomre 1981). Spiral arms are visually distinctive
since they are the sites of the most active star formation. Thus, they host very
young stars, belonging to the extreme Population I. In general, metal-rich disk
stars are members of Population I, while older, metal-poor halo stars are said to
belong to Population II. The existence of a Population III of first-generation stars
remains speculative.

Object types certainly belonging to extreme Population I are stars with the
earliest spectral types, O and B. These are bright, hot, massive and blue stars
which have a lifespan of only a few million years. Therefore, they have no time
to disperse, but have to stay close to their birth region within spiral arms. It is
their light that lets a spiral arm appear bright and bluish. The youngest open star
clusters (age < 10 Myr) also belong to the extreme Population I—bright O and
B stars can be part of such clusters or less well-defined ‘OB associations’. H II
regions, gas clouds ionized by newly born massive and hot stars, are of course
also signposts of ongoing star formation, as are the stellar nurseries, the molecular
clouds, themselves.

All these objects can, in principle, be used to trace spiral structure
observationally. In external galaxies, spiral arms are readily visible and the
contrast of dark, filamentary molecular clouds, reddish H II regions and the
blue light of massive young stars in close vicinity to each other is particularly
impressive. In our own Milky Way the task of locating spiral arms is more
challenging. Due to interstellar extinction, explained in section 2.1.2, optical
tracers are only useful for local spiral structure, within a distance from the Sun
of ∼5 kpc. Even within this range, accurate distances are not always easy to
determine. Still, an analysis of the distribution of O stars and young open clusters
yields several spiral features: the local Orion arm or spur, the inner Sagittarius
arm, the outer Perseus arm and a hint of another arm outside the Perseus arm,
named Perseus+1 or, simply, ‘Outer Arm’. The names of these spiral arms are
derived from the constellations towards which they are most clearly seen.

To trace the spiral structure throughout the Galaxy, we need extinction-free
tracers. The first such tracer which arrived with the advent of radio astronomy
was the 21 cm line of H I. Surveys covering almost the entire Milky Way show a
distribution that vaguely resembles a spiral-like structure, but it is not easy to pin
down actual spiral arms (e.g. Kerr 1969). One reason for this is, of course, that
H I clouds are not extreme Population I objects—they also appear off spiral arms.

Molecular clouds, and especially the 2.6 mm CO line, are better suited
to delineating spiral arms, since they combine the advantages of the 21 cm
transition—unaffected by extinction, velocity information and, assuming a
rotation curve, at least easy-to-obtain kinematic distance information—with
their nature as extreme Population I objects highly concentrated in spiral arms.
Studies of the large-scale distribution of molecular clouds indeed gave convincing
evidence of long, continuous spiral arms (Grabelsky et al 1988, Solomon and
Rivolo 1989, see figure 2.4). The Sagittarius arm can be shown to connect with
an arm in the constellation Carina, extending over an angle of almost 270◦. This



46 The Milky Way: structure, constituents and evolution

Figure 2.4. The spiral arm structure of the Milky Way derived from the distribution of
molecular clouds. Continuous arms become visible. (Image: Hüttemeister/Janssen).

shows that the Milky Way is not a ‘flocculent’ spiral, an object like M 63 which
has a large number of arm fragments which give the overall appearance of a spiral
galaxy, but no distinct arms. However, we find too many arm segments for the
Milky Way to be (convincingly) classifiable as a ‘Grand Design’ galaxy like M 51,
an object with two very high-contrast spiral arms.

The ‘classic’ tracer of spiral structure is the distribution of H II regions. This
is made possible by the fact that H II regions are not only visible in the optical, but
also in radio recombination lines, which are extinction-free tracers allowing the
observation of objects on the far side of the Galaxy. A model of the spiral structure
of the Milky Way based on the location of H II regions was first constructed by
Georgelin and Georgelin in 1976. Data by Downes et al (1980) and Caswell and
Heynes (1987) were added and collected by, e.g., Taylor and Cordes (1993). In
addition to H II region data, tangents to the spiral arms are well defined since
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the line-of-sight through the spiral arm is especially long and the density of the
relevant tracers very high. Models show the Perseus arm, the Sagittarius–Carina
arm, the Scutum–Crux–Centaurus arm and an ‘Inner’ or 3 kpc arm as continuous
features.

Based on such data, most authors envision the Milky Way as a four-armed
spiral (Vallee 1995). However, more complex models like the superposition of a
2 + 4 arm pattern (Lepine et al 2001), also based on analysis of the H II region,
i.e. essentially the same data set, supported by stellar kinematics and N-particle
simulations, are also still discussed. The four-armed nature of the spiral is most
certain in young Population I tracers, which tend to be the most luminous objects,
which are—as we have seen—those commonly used to define spiral arms. The
picture may be different when we examine the distribution of older stars. Drimmel
(2000) argues that K-band data, mostly originating from older stars, are well fitted
by a two-armed spiral. This may indicate that the Milky Way has a different
spiral pattern in the optical and the NIR (or, more physically, in its young and old
populations), a phenomenon also seen in a number of external galaxies. We will
see in section 2.2.3 how simulations based on the triaxial structure of the bulge
also contribute to our understanding of the large-scale spiral structure of the Milky
Way, which, however, remains far from complete and perfect.

2.2.3 The bulge: photometric 3D models, bulge/disk models and mass

The bulge in the Milky Way could be seen either as the inner part of the Galactic
halo or as the outer part of the Galactic bar, which we will examine in slightly
more detail in section 2.2.4. The properties of its stellar population are not easy to
determine, since the extinction to this region is generally high. ‘Baade’s window’
is an exception, a region at Galactic latitude b ≈ −4◦, where the extinction
happens to be low. Thus, up to a short time ago most observations of the stars in
the bulge were made either in Baade’s window or other regions at high Galactic
latitude (|b| > 3◦). These observations showed that the bulge in the Milky Way
closely resembles other spiral bulges or moderately luminous E or S0 galaxies
(e.g. Whitford 1978). Light in the near infrared (NIR) region of the spectrum,
at wavelengths of ∼1.2–2.2 µm, is dominated by old middle and late-type M-
giant stars (Blanco et al 1984). Thus, the overall photometric and spectroscopic
properties of the Galactic bulge are like those of early-type galaxies, dominated
by old and metal-poor population II stars, similar to what is found in the Galactic
halo.

However, more detailed studies find a gradient in the metallicity (Tiede et
al 1995), with rising metal content in the direction of the Galactic Center. At
the center itself, the metallicity is Solar or higher. Recent NIR observations that
came as close as 0.2◦ to the Center revealed evidence for a bright, young stellar
population that can be found only in the inner ∼1◦ and quickly declines with
increasing radius (Frogel et al 1999).

To be able to analyze the structure of the bulge in the Milky Way and draw
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Figure 2.5. The bulge of the Milky Way as it appears from the Earth at NIR wavelenths
(composite image at 1.25, 2.2 and 3.5 µm spanning 60◦ in Galactic longitude from the
DIRBE instrument aboard the COBE satellite). See also color section.

conclusions about the existence of a triaxial structure, we need to overcome a
problem similar to that encountered when trying to derive the spiral structure:
if we see the bulge region at all (i.e. at NIR and longer wavelengths), we see it
edge-on. Thus, the observed surface brightness distribution has to be deprojected
to derive the photometric structure of the bulge. This has been done based on dust-
corrected maps from the COBE satellite (DIRBE instrument, in the L (3.5 µm) or
K(2.2 µm) band, see figure 2.5). Then, it is possible to model the 3D structure of
the bulge and also investigate the consequences the shape of the bulge may have
on the non-axisymmetric structure of the disk.

This has been done by, e.g., Binney et al (1997), based on a deprojection
algorithm developed by Binney and Gerhard (1996). They first obtained a best fit
to the observed structure, starting with an analytic model which was improved
by using a Richardson–Lucy deconvolution algorithm. The best fit was then
deprojected. The result is a clearly and robustly triaxial object with a best-fit
axis ratio of 1 : 0.6 : 0.4 and dimensions of 1.8 kpc (major axis) by 1 kpc (minor
axis). The angle φ between the Sun, the Galactic Center and the long axis of the
bulge is also a free parameter of the fit; it turns out to be (again robustly) small:
φ ∼ 20◦. Another parameter of the model is the position of the Sun above or
below the plane of the Milky Way, which is 14 ± 4 pc above the plane. Close to
the Center, the radial brightness profile is well approximated by a power law, but
the ‘barred bulge’ seems to be embedded in a thin elliptical disk 3.5× 2.0 kpc in
size. The bar has a pattern speed of �P ∼ 60–70 km s−1. At a radius of ∼3 kpc,
there is a secondary brightness maximum along the y-axis that may be related to
the 3 kpc spiral arm.

Similar deprojections and models by other authors (e.g. Freudenreich 1998)
have arrived at compatible results.

A slightly different approach was taken by Fux (1997). He used the
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COBE/DIRBE K-band map to select the best models out of a large number
of stellar dynamical simulations. The models contain a ‘nucleus-spheroid’
component which represents the bulge, a double-exponential disk and an oblate
exponential halo. They extend out to a radius of 10 kpc.

The agreement with Binney et al’s results is good: Fux finds φ = 28◦ ± 7◦,
�P = 55±5 km s−1 and a bar corotation radius of 4.3±0.5 kpc, which constitutes
a firm upper limit to the possible bar size. His bar axis ratio is ∼0.5.

Examining the families of models, it is found that at a late enough time a
bar instability always forms—indeed, in numerical simulations it is very easy
to produce persistent bars, some of which are due to numerical effects. Spiral
structure is far more rarely seen in these models and, if it appears, it is very short
lived. This is partly due to the fact that the models investigated so far are pure
stellar dynamical ones, which do not take the influence of a gaseous component
into account. Even though most of the mass resides in the stars, gas can have a
large effect on the structure that emerges from a model, since it is the coldest, most
dissipative component of a galactic system, reacting most readily to perturbations.
However, models including gas dynamics are more difficult to realize than purely
stellar dynamical calculations.

Still, recently a number of authors have presented bulge/disk models
which include gas dynamics (Englmaier and Gerhard 1999, Fux 1999, Weiner
and Sellwood 1999). Englmaier and Gerhard calculate quasi-equilibrium flow
solutions in the gravitational potential of the deprojected COBE NIR bulge/bar
and disk. Their models extend out to a radius of 7 kpc. The best models not only
confirm—again—the barred bulge of the earlier deprojections, with φ = 20◦–25◦,
�P = 55 km s−1 and a corotation radius of 3.5±0.5 kpc; they also quantitatively
reproduce the location of the spiral arm tangents determined by a variety of tracers
inside the solar circle, spiral arm locations that we have already encountered as the
most certain features of the Milky Way spiral structure. The proposed four-armed
spiral structure is clearly confirmed and even more pronounced if an additional
spiral arm potential is included. A sample model is shown in figure 2.6.

Another assumption mentioned earlier (section 2.2.1) is also supported by
gas-dynamical modelling: this is the maximal disk, i.e. a maximal mass-to-light
(M/L) ratio, constant for the NIR bulge and disk, that is compatible with the
rotation. The implication of this is that the dark matter contribution to the mass in
the inner galaxy is small.

We can be fairly certain that the bulge indeed has a triaxial structure since
many independent determinations arrive at very similar results. But we have not
said anything so far about one very fundamental parameter of the bulge: its mass.
‘Conventional’ mass determinations based on NIR brightness and a constant M/L
ratio yield Mbulge = (1.6–2.0)× 1010 M�. This already takes into account the
barred, triaxial shape determined earlier.

Interestingly, it is possible that these mass determinations may be
contradicted by bulge microlensing experiments (i.e. gravitational lensing by
stars, see chapter 9 for a discussion of lensing). In such experiments, millions of
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Figure 2.6. A combined gas-dynamical model of the bulge and the disk, including the
influence of the dark halo (from Englmaier and Gerhard 1999), calculated with 100 000
particles. The spiral arm tangents are marked; they are well matched by the model which
clearly results in a four-armed spiral.

(bulge) stars are monitored for brightness variations. True microlensing events
are characterized by symmetric light curves that are independent of color—
a secure criterion for distinguishing a microlensing event, when light from a
background star is amplified by the close passage of an (unseen) lensing star,
from an intrinsically variable star. Microlensing data, which are now based
on good statistics and ten years of observations, are collected for a number of
purposes, among them the search for Massive Compact Halo Objects (MACHOs)
as possible contributions to dark matter and the search for planetary systems.
They yield an ‘optical depth’ toward the bulge of τ = (2–3)× 10−6 (Alcock et al
2000) for microlensing.

While this is certainly a small value, it is too high to be compatible with bulge
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masses determined by the standard method (Binney et al 2000, Gyuk 1999). It
seems that a bulge mass of 2.5 × 1010M� is required by the microlensing data,
which possibly does not agree with any realistic bulge model, though Blum (1995)
finds a mass of 2.8× 1010M� for very special parameters within the framework
of a barred stellar distribution. However, in his model the pattern speed required
is uncomfortably high; lower values of �P reduce Mbulge.

It remains to be seen whether these concerns will result in an upward
correction to the bulge mass. Alternatively, it is of course always possible (though
not very satisfying) to assume that our line-of-sight toward the bulge is not quite
typical.

2.2.4 The nuclear bulge or bar and the Central Molecular Zone

We have now reached the inner 500 pc of the Galaxy, the extended ‘Galactic
Center’ (GC) region, which shows a number of characteristics that are distinctly
different from any other part of the Milky Way. Observationally, investigation
of the inner 500 pc (corresponding to a Galactic longitude of l = ±3.5◦),
at least close to the Galactic plane, is the domain of radio, millimetre and
infrared astronomy, due to an extinction that does not allow observations at
optical wavelengths. More recently, information on the GC region has been
complemented by data from X-ray satellites.

Historically, the first maps of the inner 500 pc were obtained at long cm
wavelengths in the radio continuum regime. Even at these long wavelengths,
improvements are still possible, as has been impressively shown by the wide-
field radio image of the GC obtained at λ = 90 cm at the Very Large Array
(VLA) presented by LaRosa et al (2000; see figure 2.7). At these wavelengths, the
emission is mostly non-thermal, tracing supernova remnants, some of which are
foreground objects, but H II regions and a large number of straight non-thermal
filaments are also studied. Many of these filaments are located in the Galactic
Center Radio Arc, a projected distance of 50 pc from Sgr A, which hosts the GC
itself. The straightness of the filaments strongly suggests a direct relation to the
magnetic field structure in the GC region.

The morphology of the ISM in the GC region is dominated by a number of
H II regions, the most important of which are historically known as Sgr A, B2, C
and D. The very presence of these H II regions shows that star formation in the GC
region is ongoing. This conclusion is supported by the results on the age structure
of the stellar population in the bulge mentioned earlier and the detection of young
and massive star clusters. Not only does the Sgr A region, i.e. the ‘actual’ GC, host
an unusual star cluster, there are at least two more such clusters, the Arches and
the Quintuplet clusters (Cotera et al 1996, Figer et al 1999). These components
of the GC region will be discussed in more detail in chapter 4.

In the following, we will focus on the dense, molecular component of the
ISM in the GC region. Giant molecular clouds are associated with the H II regions
in the GC region. Surveys of the GC region in molecular lines show, however,
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Figure 2.7. Full 330 MHz wide-field image of the Galactic Center at an angular resolution
of approximately 45′′ taken with the Very Large Array (LaRosa et al 2000). See also color
section.

that molecular gas is very widespread in the GC region. The gas is traced by
spectral lines in the mm range of the spectrum, most importantly the emission
of 12CO and its isotopomers (12CO, Dame et al 2001; 13CO, Heiligman 1987;
C18O, Dahmen et al 1997). Other useful molecules tracing gas at higher densities
(n(H2) > 104 cm−3) are, e.g., HCN (Paglione et al 1998) or the shock tracer SiO
(Martin-Pintado et al 1997).
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Molecular emission is so widespread that we can speak of a continuous
‘Central Molecular Zone’ (CMZ) (Morris and Serabyn 1996). Its investigation
requires surveys covering several square degrees using (preferentially southern)
mm telescopes. These are, even today, large observational projects possibly taking
years of observing time, since until very recently radio telescopes could only
map a source by observing it point by point, a very time-consuming process
for a very extended region like the CMZ. A new generation of array receivers
promises significant improvement, even though the number of ‘pixels’ so far is
still typically <20. The large extent of the CMZ therefore explains the somewhat
paradoxical situation that we tend to know more about the large-scale molecular
content of nearby external galaxies in many molecules and transitions than in the
CMZ. On the other hand, any observation of the CMZ, even with small telescopes,
has better resolution than what can be achieved even with interferometers for
external galaxies. Thus, the CMZ provides us with an important template for
the study of external galaxies, and Galactic and extragalactic studies complement
each other, a situation that is similar to the study of other constituents of the Milky
Way.

The molecular layer of the Milky Way in general, including the CMZ and
disk, is the coldest (10 K ≤ Tkin ≤ 100 K), thinnest (scale height <100 pc)
and most dissipative component of the Galaxy. Thus, it is most susceptible to
gravitational perturbations, caused either by a spiral arm or a bar. A survey of
the entire plane of the Milky Way in 12CO (Dame et al 2001) shows, as expected,
an almost 1 : 1 correspondence between the presence of molecular gas and dark
(dust) clouds, i.e. regions of high extinction.

The gas in the CMZ is distinctly different from the molecular clouds found in
the disk of the Milky Way: in the innermost Galaxy we find gas that is, on average,
warmer and denser than in the disk, with temperatures reaching 100 K and more.
In detail, the temperature structure of the CMZ gas is complex—non-LTE (LTE
= local thermal equilibrium) radiative transfer models based on multi-line studies
show that a large part of the dense component is cool (Tkin ∼ 20–30 K), while
a ‘diffuse’, warmer component of much lower density is more widespread and
may not be bound to molecular clouds (Hüttemeister et al 1993, 1998, Dahmen
et al 1998). Shocks play an important role and are traced by specific molecules
like SiO as well as by H2 emission originating from a hot (for a molecular cloud,
Tkin ∼ 600 K), possibly dense component, which, however, represents only a
very small part of the total molecular mass in the CMZ (Rodriguez-Fernandez et
al 2001).

This mass is not easy to estimate, since it has been shown from line
intensity ratio analysis of different CO isotopomers that the Galactic ‘Standard
Conversion Factor’ between 12CO 1 → 0 intensity and H2 column density
(N(H2) ≈ 2×1020 ICO) systematically overestimates the gas mass if a warm, thin
gas component is important. In this case, the 12CO emission is ‘overluminous’
compared to the Galactic disk conditions for which the conversion factor has been
calibrated (Dahmen et al 1998). This result also applies to the central regions
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of external galaxies, even to Ultraluminous Infrared Galaxies (ULIRGs) which
concentrate up to 109M� of molecular gas in their inner 500 pc.

Another aspect that makes the investigation of the CMZ (and also its
neutral H I counterpart) worthwhile ties in with the determination of the three-
dimensional shape of the bulge. We have pointed out in section 2.2.3 that the
bulge can be seen as the outer part of the Galactic Center bar. Consequently, we
expect to see clear evidence of the bar potential in the molecular and also neutral
gas, since this is the most unstable component to gravitational perturbations.

Indeed, very convincing evidence for the barred morphology of the inner
Galaxy has been found in studies of the kinematics of the gas. The evidence has
accumulated over a decade, starting with work by Binney et al (1991). It played
a very important role in establishing the Milky Way as a (weakly) barred galaxy,
a property it shares with two-thirds of all spiral galaxies. The arguments rest
on an examination of the longitude–velocity diagrams of both the CO and H I
distribution in the inner 500 pc region. These diagrams show a characteristic
‘parallelogram’ structure that is not compatible with the gas clouds being on
circular orbits around the Galactic Center. Strong emission is found at velocities
that are ‘forbidden’ for circular motion, implying that the gas moves in a non-
axisymmetric bar potential.

The parameters of this bar (φ and the corotation radius) had already been
determined by Binney et al to be entirely consistent with what is found for
the NIR structure of the bulge. Of course, the molecular bar is flatter than
the bulge, since the gas is highly concentrated within the Galactic plane. The
more sophisticated gas-dynamical simulations mentioned earlier (e.g. Fux 1999,
Weiner and Sellwood 1999, Englmaier and Gerhard 1999) reproduce the detailed
structure of the longitude–velocity diagram of the GC region, both for molecular
and neutral atomic gas, in impressive detail in models taking into account the bar
potential and gas-streaming motions along the bar.

2.2.5 Gas flows and infall: Feeding the nuclear region

A bar provides an obvious mechanism to redistribute angular momentum and to
funnel material toward the center of a galaxy. This results in the expectation that
gas will flow along the bar and thus become available to feed central activity,
a circumnuclear starburst or, possibly, a central black hole. Since the bar is,
therefore, intimately connected to the degree of activity we can expect from the
Galactic black hole, we will briefly examine the processes that lead to the inflow.

The structure of a bar is governed by the location of its characteristic
resonances. The most important of those are the corotation resonance (CR,
mentioned earlier), where �P = �, i.e. the angular velocity of circular rotation
� is identical to the bar pattern speed �P, and the Inner Lindblad Resonance(s)
(ILR), with the criterion�P = �−κ/2 (κ is the epicycle frequency—the epicycle
frequency is related to the periodic motion of stars at a given location in the
disk compared to their motion relative to a reference frame moving at a constant
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circular velocity). While there is always one CR, there may be zero, one or two
ILRs, depending on the details of the bar potential and the degree of central mass
concentration. Within a bar potential, a number of orbit types can be distinguished
(e.g. Binney and Tremaine 1987, Contopoulos and Grosböl 1989). The orbits
change the orientation of their major axis by 90◦ at each resonance.

Gas has to settle on orbits that are stable in the sense of being non-
intersecting. Otherwise, the clouds, being viscous, suffer collisions that will result
in a quick dissipation of angular momentum and orbital energy, and move them
to stable orbits deeper within the potential well of the bar. Thus, for gas clouds
we can restrict ourselves to considering two orbit types: x1-orbits, which are
elongated along the bar axis, occur between the ILR and the CR and sustain the
bar; and x2-orbits, which are more circular, but elongated perpendicular to the bar
major axis and occur within the ILR. We ignore possible complications due to two
ILRs and dynamically detached inner bars. We see at once why the CR limits the
bar length: outside the CR the orbits change orientation again and cannot sustain
a bar. Also, if x2-orbits become very dominant, which is the case if the central
mass concentration grows very large, the bar self-destructs, since x2-orbits have
an ‘anti-bar’ orientation.

There is an innermost possible x1-orbit, with a cusp at its turning point. All
x1-orbits inside of this cusped orbit develop loops and thus are not stable for gas.
When passing close to the center, the gas on inner (but still ‘allowed’) x1-orbits
passes a region close to the ILR where x2-orbits are already possible. Gas clouds
on x1-orbits may encounter gas that has already settled on x2-orbits, leading to
collisions and a characteristic ‘ILR shock’. As a result, gas piles up close to the
ILR, leading to either a ‘twin peak’ (Kenney et al 1992) or a ring structure, often
with starburst activity.

But not all gas moves from x1- to x2-orbits during its first passage close to the
ILR. Part of the gas loses some angular momentum in a collision, but not enough
to settle on an x2-orbit. This gas forms a ‘spray’ of likely unbound molecular gas
that moves across the bar and impacts gas still on x1-orbits on the far side of the
bar, causing another region of characteristic bar shocks. Thus, orbital energy is
dissipated by shocks, cloud collisions and tidal forces exerted by the bar potential
(Das and Jog 1995). All these effects result in a loss of angular momentum and
a net inflow of the gas. They also explain the presence of an unbound, diffuse
molecular gas component that has been removed from the molecular clouds.

The shape of the characteristic bar shocks, which define the main lanes
of infall, can be successfully reproduced in hydrodynamical simulations (e.g.
Athanassoula 1992, see figure 2.8). The dust lanes are curved, since due to the
viscosity of the molecular ISM the transitions from one orbit type to another are
less abrupt than predicted when only considering the bar potential. The shape
of the dust lanes agrees very well with observations in strongly barred external
galaxies like NGC 1365. Their detailed shape depends on, e.g., the degree of
central concentration, the bar pattern speed and the (in)homogeneity of the bar.

Are these concepts applicable to our observations of the CMZ? The ILR
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Figure 2.8. Gas flow within a bar (adapted from Athanassoula 1992). The relation between
gas density, the location of the characteristic bar shocks and the velocity field are apparent
in this example of a hydrodynamical simulation.

region may be identified with the largest pile-up of molecular gas in the CMZ,
found in the Sgr B2 region, at a projected distance of ∼80 pc from Sgr A. The
Sgr B2 region can indeed be considered to be the ‘molecular center’ of the Milky
Way, since it concentrates more molecular mass than the Sgr A complex. It
may thus represent part of an (incomplete and very inhomogeneous) ILR ring
or one of two twin peaks. It certainly shows evidence of the presence of strong
shocks. The Sgr B2 region is located north of the GC. The Sgr C complex may
be its southern counterpart, but this Giant Molecular Cloud is considerably less
massive. In general, the distribution of molecular gas in the CMZ is significantly
asymmetric, with more material found at northern longitudes. This points to a
(probably transient) m = 1 instability in addition to the well-known bisymmetric
m = 2 (bar) instability.
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Is it possible to trace the dissipation of energy and the shock activity along
the bar directly in the molecular component? The kinematics of the gas can indeed
be linked to the ‘chemistry’ by observing characteristic shock tracers like SiO.
This molecule is only encountered in the gas phase if it has been removed from
dust grain surfaces by shocks. Thus, regions with enhanced SiO abundance can
be identified with shocks. SiO emission in the Galactic disk is highly confined
to stellar outflows, while in the CMZ the SiO emission can be mapped on
large scales. A detailed investigation (Hüttemeister et al 1998) shows a clearly
enhanced abundance close to the ILR (Sgr B2) and along the regions where the
impact of the ‘spray’ on the gas remaining on x1-orbits would be expected.

Thus, a gas flow along the bar at least to the ILR region, identified with
Sgr B2, within the concept of gas moving on classical bar orbits outlined earlier, is
convincingly observed. Further transport inward, necessary to feed the black hole,
may be less easy, since the efficiency of energy dissipation will not be as high as
in the sphere of influence of the rounder, non-intersecting x2-orbits. Still, further
infall certainly takes place. One process that has to operate is dynamical friction.
It can be estimated that gas is fed to the very center of the Galaxy on timescales
that are far shorter than a Hubble time (timescale of cosmological evolution or
‘age’ of the universe). However, the inflow to the ILR and possible activity cycles
related to the black hole do not have to be coupled.

The fate of the gas closer to the black hole will be followed in chapters 4
and 10.

2.3 Galaxy evolution

Having seen what constitutes our Milky Way, i.e. ‘what is there’, we will now
briefly explore the question how ‘it got there’, i.e. how a galaxy forms and evolves.
Clearly, the field of galaxy formation and evolution is huge, and far beyond the
scope of this chapter. Thus, we will only sketch the barest, qualitative outlines of
the most crucial concepts and results.

The study of galaxy evolution has gained enormous momentum since very
deep observations of almost randomly selected, small areas of the sky at a number
of wavelengths have become available. The most famous of these ‘Deep Fields’
are the Hubble Deep Fields (HDF North, observed in 1995, and HDF South,
observed in 1998, see Ferguson et al 2000 for a review of the HDF observations
and their impact). Deep fields, often centered on the HDFs, have now been
obtained in a multitude of wavelength ranges, i.e. in the far infrared (ISO, e.g.
Serjeant et al 1997), in the submillimetre (Scuba, e.g. Hughes et al 1998) and at
X-ray wavelengths (Chandra: Giaconni et al 2001).

In principle, these images allow the observation of galaxy evolution ‘as it
happens’, since they contain both very distant and more nearby objects. Thus, it
is possible to follow the evolution of the galaxy population. Of course, to do so,
it is necessary to distinguish between true evolutionary effects and morphological
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variations. Thus, a measure of distance, or redshift, is needed. It is difficult
or impossible to determine spectroscopic redshifts for very faint objects, but the
problem has been moderated with the advent of much more easily measured
photometric redshifts. It could be established that these redshifts are indeed fairly
accurate (e.g. Fernandez-Soto 2001).

2.3.1 Hierarchical, bottom-up structure formation

The investigation of large-scale structure formation is the domain of numerical
simulations of dark matter particles, using some of the largest parallel
supercomputers in existence. For example, the ‘Hubble Volume’ project of the
international Virgo collaboration (see www.mpa-garching.mpg.de/∼virgo/virgo)
follows 109 dark matter particles from z ∼ 5 (z ∼ 1.4 for a somewhat smaller
volume) to the present. Thus, the development of galaxy clustering (Evrard et al
2001, Colberg et al 2000) or the mass function of dark matter halos (Jenkins et al
2000) can be investigated.

The simulations reproduce observational redshift surveys such as the 2dF
survey (Percival et al 2001), the Las Campanas redshift survey (e.g. Shectman
et al 1996) and—soon—the Sloan Digital Sky Survey to a reasonable degree of
accuracy. At high redshifts, they show little large-scale structure, though of course
the seeds of structure can be tied in with the Cosmic Microwave Background
fluctuation spectrum, and beyond, as established by the COBE satellite and the
recent Boomerang (e.g. de Bernardis et al 2000) and Maxima (Hanany et al 2000)
balloon experiments.

The development of filamentary structures (‘bubbles and voids’) is striking
and can already be followed in simulations with somewhat fewer particles, like
the one by Jenkins et al (1998), based on 1.7× 106 particles, which was carried
out assuming four different cosmological models (see figure 2.9). Universes
with low matter content (�M = 0.3) such as the currently favoured �CDM
cosmology form structure earlier than universes with �M = 1, like the formerly
‘standard’ Einstein–de Sitter universe, that seems to be ruled out by current
data. At low redshift, all simulations give similar results. They probe size
scales down to ∼10 kpc. Thus, they include the strong clustering regime and
follow the hierarchical formation of clusters, but do not resolve the evolution
of individual galaxies. The simulations have predictive power and help decide
between cosmological models; for example an analysis of the Hubble volume
leads to the prediction that too many hot (in the sense of X-ray temperatures)
clusters like the Coma cluster at z ∼ 1 would not be compatible with a �CDM-
based model.

On the slightly smaller scale of the evolution of galaxy clusters, we expect
the cluster environment itself to influence the evolution of the member galaxies.
Smaller building blocks are expected to merge into larger objects, and this process
can again be followed in simulations (e.g. Moore et al 1999). It turns out that,
while hierarchical merging certainly occurs, the extent of the merging depends
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Figure 2.9. Four simulations of large-scale structure formation by the VIRGO consortium
(Jenkin et al 1998). Four different cosmological scenarios are assumed; the development
of structure is depicted at redshifts z = 3, 1, and 0. The boxsize is 239.5 Mpc/h.

on the velocity profile and dispersion of the cluster. In any case, small dark
matter subhalos seem to survive in surprisingly large numbers down to the scale
of individual giant galaxies. In simulations, the halos of individual galaxies look
very similar to galaxy clusters, and this result persists at the highest currently
possible resolution of numerical, dissipationless N-body simulations (Ghigna et
al 2000).

Thus, hierarchical models for structure formation naturally form massive
dark matter halos with a wealth of substructure. On a cluster scale, this
substructure can easily be identified with visible galaxies, that are (with some
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bias function that is difficult to determine) hosted by the dark matter subhalos.
The observed distribution of galaxies in clusters agrees reasonably well with
prediction.

On the scale of individual galaxies, however, there may be a problem: here,
the subhalos correspond to satellite dwarf galaxies, and the observed abundance
of such dwarf satellites does not match the large number of predicted dark matter
subhalos (Moore et al 1999, Klypin et al 1999). It remains to be seen whether this
is a serious problem of the otherwise very successful Cold Dark Matter (CDM)
simulations or whether it can be solved by fine-tuning the models, as suggested
by, e.g., Font et al (2001), who argue that at least the dynamical impact of the
subhalos on the thin disk of a galaxy should be minor.

Evidence for hierarchical, bottom-up galaxy formation originates not only
from numerical simulations; it is strongly supported from an observational
viewpoint. Analysis of deep field data shows that the morphological classification
of galaxies by the classical Hubble sequence breaks down at redshifts >1 (e.g.
Driver et al 1998). Barred galaxies seem to become rare at even lower redshift
(Abraham et al 1999) while the number of ‘irregular’ or ‘peculiar’ galaxies
increases steeply (see the recent review by Abraham and van den Bergh 2001).

In general, the size–redshift relation seen for E/S0 and spiral systems seems
to point to their assembly of redshifts >1. There also seems to be an excess of
faint blue, very compact galaxies, many of which are located at z ∼ 0.5, but
some are at z > 2. This appears to be an actively evolving galaxy population,
constituting, at least in part, the building blocks of larger systems.

In some cases, these subsystems or building blocks may have been caught in
the act of taking part in a hierarchical merging process. Pascarelle et al (1996)
found 18 small, bluish objects in a ∼0.7 Mpc field at z = 2.39 and these were
interpreted as the building blocks of a future large galaxy. Similarly, Campos et
al (1999) reported the detection of 56 Lyman α emitters in a small field adjacent
to a quasi-stellar object.

2.3.2 Evolutionary mechanisms: mergers and ‘internal’ processes

Most galaxies are not isolated—as we have seen, they tend to form in clusters,
or at least in groups. This cluster environment is expected to influence not
only the number of galaxies directly through merging, but also their type. This
effect, dubbed ‘galaxy harassment’, probably has consequences for the balance of
Hubble types in a cluster between redshifts of, e.g., z ∼ 0.4 and the present, that
is, in a redshift regime where the Hubble sequence still describes the galaxy type
adequately. It seems that more distant clusters have a larger relative fraction of
small spiral galaxies, many of which show some indication of high star formation
or starburst activity, than clusters in the local universe. The latter are dominated
by spheroidal galaxy types, ellipticals and S0s (Moore et al 1998).

Merging itself is, of course, the most dramatic and obvious driving force of
galaxy evolution. In a scenario of hierarchical structure formation, the merger
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rate is expected to increase with redshift proportional to (1+ z)m with m = 2–3.
This relation is expected to hold at least up to z = 2–3.

There are many excellent simulations of galaxy mergers (e.g. Barnes and
Hernquist 1996, Mihos and Hernquist 1996, Springel et al 2001). It is important
for the outcome to take into account the role of gas and (if possible) the feedback
of the star formation process (see Kauffmann et al (1999) for a prescription).
The simulation of collisionless dark matter or stellar particles can only be a first
step in such simulations. The morphology of interacting and merging galaxies is
well reproduced by models, down to the tidal tail structure of individual real-life
objects. Usually, the models suggest that the merger remnant looks much like
an elliptical galaxy. Specifically, the remnant structure follows the well-known
R1/4 law for the surface brightness of an elliptical fairly well, though it somewhat
depends on the initial conditions and there may be discrepancies in the details.

This has led to the conclusion that ellipticals are the endpoints of galaxy
evolution through mergers. During the merger, the galaxies pass through a phase
of a very intense central starburst, since the gas is concentrated quickly into
the nuclear region. Briefly, they may shine brightly as ULIRGs (ultra-luminous
infrared galaxies), emitting more than 1012L� in the Far Infrared. During this
phase, most of the gas of the progenitor galaxies is consumed. Observations have
indeed shown that all ULIRGs seem to be mergers, often even multiple ones.
Once the starburst is over, ellipticals (and spiral bulges) evolve only passively, i.e.
by the ageing of the stellar population. If they have largely assembled in a ‘merger
age’ at z ∼ 2, this explains naturally why most ellipticals and bulges today appear
to be old, reddish objects.

Apart from the spectacular evolution by merging, ‘internal’ mechanisms may
also lead to secular changes in the appearance of galaxies. These are slower
evolutionary mechanisms that take place after the initial assembly and most easily
work on galaxies which have not become ellipticals, but are instead gas-rich disk
galaxies. Interactions which do not lead to mergers play an important role in
triggering or at least speeding up these evolutionary processes.

In contrast to the passively evolving ellipticals, the disk galaxies continue to
form stars at a fairly constant rate of a few M�yr−1. This star formation takes
place, as we have seen, mostly in spiral arms, and possibly in the central region,
especially if it is fed by a bar. The detailed structure of the spiral arms themselves
is almost certainly subject to secular changes, even in Grand Design spirals,
though the general character of a disk galaxy as a spiral remains unchanged.
What is the gas supply for continuing star formation? Some of the necessary
replenishment takes place by inflow from the more gas-rich outer regions of the
disk—we have seen that the H I disk often extends far beyond the optical disk. It
is, however, also possible that infall of intergalactic (intra-cluster or intra-group)
or halo gas clouds takes place. Chemical evolution models and the star formation
and thus the gas consumption rates in many disk galaxies may require some infall.

Evolution along the Hubble sequence may happen to some degree. If so, then
the direction of evolution is late → early, since all processes result in a higher
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Cattaneo 2001Shaver et al. 1999

Figure 2.10. Left panel: the space density of a quasar has a maximum at a redshift of
∼ 2 (from Shaver et al 1999). Right panel: the same may be true for the star formation
rate, but in this case, the decline beyond z ∼ 2 is not well established (Cattaneo 2001; the
points with error bars correspond to measurements; the curves are predictions for different
evolutionary models).

central mass concentration and thus a more pronounced bulge. A bar, whether
transient or persistent, should usually be involved in such a process, since it is the
most efficient means of angular momentum transport.

More dramatic events, i.e. major mergers between disk galaxies with a
resulting strong starburst, may of course also take place in the local universe, and
we know a number of examples (e.g. Arp 220 and similar objects). Major mergers
are, however, rare in the present-day cosmos. Accretion of smaller galaxies is a
far more frequent process. In such a ‘minor’ merger, a large disk (or elliptical)
galaxy swallows a smaller companion. It is likely that the Milky Way has been
involved in several such acts of cannibalism during its history. At present, it is
performing another one: it is in the process of consuming a small dwarf galaxy,
the Sgr dwarf, which has already been disrupted and stretched out to a degree that
made its very detection difficult (Ibata et al 1994).

The growth and evolution of a spiral bulge, e.g. through infall or inflow, may
also have consequences for the central black hole, possibly by regulating its rate
of mass accretion.

We have seen that the merging rate was certainly higher in the past, and may
have had a maximum around z ∼ 2. Possibly related to this, there is undisputed
evidence for a ‘Quasar Epoch’ at the same redshift (Shaver et al 1996, 1999).
Quasars are thought to be powered by the most luminous supermassive black
holes in the universe. Not only was the true quasar space density at z ∼ 2
more than an order of magnitude higher than it is now, it is also clear from, e.g.,
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complete samples of radio-loud quasars that it declined rapidly at redshifts> 2.5
(see figure 2.10, left-hand panel).

Investigations of the star formation history of the universe, pioneered by
Madau et al (1996), also show a clear rise by more than a factor of 10 from
the present to z ∼ 1. It is less clear, however, whether the star formation rate
declines at z > 2–3 (e.g. Cattaneo 2001, see figure 2.10, right-hand panel). This
depends, among other factors, on the role of dust extinction in the high-z starburst
galaxies and how a population of extremely dusty starbursts that appears in sub-
mm-wave deep fields, and seems to have enormous star formation rates, is taken
into account.

In any case, the rise in the quasar space density, the merger rate and the
star formation rate almost ‘in lockstep’ is very suggestive of a scenario where the
quasar brightness is explained by high accretion rates on massive central black
holes, which were assembled at roughly the same time in frequent mergers of
galaxy bulges, going along with massive starbursts. Consequently, the black holes
experienced the bulk of their growth in this period, and might have grown only
slightly since their initial assembly. This is indicated by the strong decrease in
quasar light originating in the local universe.

2.4 The relation between black holes and bulges

The evolutionary findings outlined in the previous section suggest the possibility
of a relationship between black hole characteristics and bulge parameters.
Evidence for this concept and some of its implications will be briefly discussed in
the following final section of this introductory chapter.

2.4.1 Black hole mass and bulge mass/luminosity

In recent years, there has been mounting evidence that black holes may be a
normal, possibly ubiquitous, component of galaxies: if a galaxy has a bulge or
is an elliptical, we expect to find a massive black hole in its center.

The masses of the suspected black holes have been obtained (or estimated)
by a variety of methods, some more reliable than others. The mass determination
for the Galactic black hole is, of course, outstanding in its accuracy and resolution,
and is discussed in detail elsewhere in this book (chapter 8). Very reliable black
hole masses can also be obtained by very high resolution radio-interferometric
observations of maser disks around central massive objects. Unfortunately, this
method can be applied to only a very few objects, since a special disk geometry
is required. In the best case, the Keplerian disk rotation under the influence of the
central point source can be measured directly, making the estimate for the black
hole mass, M•, very secure. This has, however, only been achieved in one case,
NGC 4258 (Miyoshi et al 1995, Herrnstein et al 1999, Bragg et al 2000).

The determination of the velocity structure of a central dust disk yields
another reliable mass estimate. Of course, the galaxy under investigation must
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have such a very central dust disk that can be studied without too much extinction.
This restricts the usefulness of the method to a few elliptical galaxies with central
disks of dust and ionized gas that can be resolved (at least by the HST, the Hubble
Space Telescope). The black hole masses determined for M 84 (Bower et al 1998)
and NGC 7052 (van der Marel and van den Bosch 1998) are good examples of a
successful application of this method.

Most black hole masses have been estimated by means of stellar dynamics,
from either HST or ground-based data. Here, the goal is to measure the rise
of the velocity dispersion due to the influence of the central mass. In principle,
this method can be—and has been—applied to many galaxies, and the first study
of black hole demographics was based on values for M• determined by stellar
dynamics (Magorrian et al 1998). However, sufficient resolution is an issue
here—the ‘sphere of influence’ of the black hole has to be clearly resolved. This
is a difficult task: in a number of cases the rise of the velocity dispersion assigned
to the black hole was only observed in the central pixel.

A relatively new and very promising technique for determining M• is
reverberation mapping of Active Galactic Nuclei (AGNs). In this method, time
delays between brightness variations in the continuum and in the broad line
emission region (BLR) are interpreted as the light travel time between the black
hole and the BLR, i.e. the black hole accretion disk. Velocity information comes
from the width of the emission lines, and thus the black hole mass can be
determined as M• ≈ V 2r/G. The obvious advantage of this method is that it is
independent of distance. Thus, obtaining M• for a large number of AGNs, mostly
too far away for the more classical techniques, becomes possible (see Gebhardt
et al 2000a, Kaspi et al 2000, Wandel et al 1999). It now seems that this method
yields results that are very consistent with reliable determinations by other means.

In any case, in recent years, enough black hole masses have been determined
for it to become worthwhile to look for relations between M• and host galaxy
parameters, especially those of the oldest component of a galaxy, the bulge.

The beginnings of what is now known as the relation between bulge and
M• were rather humble and go back to at least Kormendy (1993). There seemed
to be evidence that M• scales with the luminosity (equivalent to the mass for
a constant M/L ratio) of the bulge. In a 1995 review paper, Kormendy and
Richstone displayed a diagram relating the mass of the bulge to M• for eight
galaxies (and two non-detections). Excluding the mass determination for the
Galactic black hole, which seemed to have a mass that was too low in relation
to the other estimates, they found a proportionality of M•/Mbulge ∼ 3 × 10−3.
The Galactic black hole alone yielded M•,gal/Mbulge,gal ∼ 1.7×10−4. Even then,
the question could be asked why the best-determined value (for the Galaxy) was
excluded from the relation. But at that time, the relation was based on very few
galaxies and had to be considered more as a trend than a firm proportionality.

In their paper on the demography of black holes in galaxy centers, Magorrian
et al (1998) investigated the stellar kinematics of 32 galaxies. After careful
modelling of the bulge kinematics to obtain M•, they found a relation between
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M• and Mbulge of the form

log M• = (−1.79± 1.35)+ (0.96± 1.12) log Mbulge.

From individual galaxy data, a proportionality of 〈M•/Mbulge〉 ∼ 0.016 can be
derived if the unrealistically high value found for NGC 4486B is included. If this
galaxy is excluded, the ratio drops to 7× 10−3.

Following these results that seemed to indicate that a relation between
black hole and bulge mass really existed, albeit with a substantial scatter, a
potential problem was pointed out by a number of authors (e.g. Wandel 1999,
Ho 1999). The new masses determined by reverberation mapping seemed to be
systematically low compared to the stellar dynamical masses. In addition, the
large ratio suggested was not compatible with the black hole mass density inferred
if the optical QSO luminosity was to be reproduced by (standard) accretion onto
black holes.

2.4.2 Black hole mass and bulge velocity dispersion

A revision of the M•–Mbulge relation and a possible breakthrough became public
in two letters published back to back in the same issue of Astrophys. J. Ferrarese
and Merritt (2000) and Gebhardt et al (2000b) independently presented a new,
much tighter relation between M• and the bulge velocity dispersion σ (see
figure 2.11).

Ferrarese and Merritt first sorted black hole masses from the literature into
groups of ‘reliable’ and ‘unreliable’ values, with many of the (especially ground-
based) masses from the Magorrian et al sample in the latter category, since
Ferrarese and Merritt suspected that in many cases the black hole’s sphere of
influence was unresolved. However, the scatter in the M•–Mbulge relation did not
decrease when only the better determined masses were considered. This changed
dramatically when σ instead of the bulge mass was correlated with M•. While
the scatter was still large for the galaxies with the uncertain black hole masses,
the relation for the 12 galaxies with ‘good’ values for M• became very tight.
Gebhardt et al (a large group of scientists overlapping strongly with the authors
of the Magorrian et al work) found exactly the same effect for a different sample
of galaxies and values for M• based on stellar dynamics, mostly done with very
high resolution data obtained from the HST.

The relationship is so tight that it is statistically ‘perfect’ in the sense of
being compatible with only having errors due to measurements, i.e. no intrinsic
scatter. This is almost ‘embarrassingly’ tight (Merritt and Ferrarese 2001c), since
a relation this close has to be explained with effects of galaxy assembly and
evolution. If confirmed, this relation may be used to predict black hole masses
accurately from the much more easily obtained bulge velocity dispersion. The
black hole masses found are significantly, by up to an order of magnitude, lower
than the masses claimed before. Thus, the ratio between M• and Mbulge (which of
course still has a larger scatter) has gone down to a value∼ 2×10−3. This solves
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M  − M  − L

M   − L M   − σ

σ

Gebhardt et al. 2000

Ferrarese & Merritt 2000

Figure 2.11. Upper panels: the M•–σ relation according to Ferrarese and Merritt (2000).
The left panel shows the large scatter in the M•–Lbulge relation. For the same sample
of galaxies, the scatter is greatly reduced if M• is related to σ instead. Lower panels:
Gebhardt et al (2000b) come to the same conclusion, using a different sample of galaxies.

a number of problems: first, the extremely well-determined mass of the Galactic
black hole is now almost consistent with the general relation. Second, and maybe
more fundamentally important, the density of black holes in the local universe has
been redetermined to be ρ• ≈ 5× 105M� Mpc−3. This is to be compared to the
prediction of the QSO luminosity function: ρ• ≈ (2–3)× 105M� Mpc−3. Thus,
very little, if any, ‘invisible’ black hole growth since the quasar epoch is required.

Despite the general agreement, some problems remain. The relations found
by the two groups differ in detail: Merritt and Ferrarese find

M• = 1.4× 108 M�
(

σ

200 km s−1

)4.8±0.5
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while Gebhardt et al obtain

M• = 1.2× 108 M�
(

σ

200 km s−1

)3.8±0.3

.

The different slope may be partly due to a different sample. However, if the
relation really has no (or extremely low) intrinsic scatter, it should of course
be identical no matter what sample is chosen. There are also differences in the
statistical analysis of the data (Merritt and Ferrerese 2001a, b), which contribute
to the discrepancy.

It is, at this time, difficult to say whether these differences (in data, method
and opinion) only concern details which will be easily sorted out when more and
better data become available or whether they touch on fundamental difficulties.
Part of the current discussion concerns a possible low-mass cut-off of the relation,
with the test case of the Local Group galaxy M 33, a galaxy that has (almost?) no
bulge and is sufficiently nearby to allow very sensitive searches for the signature
of a black hole. No black hole has been found so far down to the very low mass
limit of M• < 3000 M� (Merritt et al 2001). Obviously, the implications of such
a mass cut-off for the M•–σ relation are related to its slope.

In any case, the impact of the M•–σ relation on studies of galaxy formation
and early evolution will very likely be significant. Clearly, it ‘must be telling
us something fundamental about origins (galaxy formation) and the connection
between black hole mass and bulge properties’ (Merritt and Ferrarese 2001a).
If the relation is simply interpreted as the M•–Mbulge relation recast in another
form, it implies the well-known Faber–Jackson law for elliptical galaxies (which
relates the velocity of stars to the bulge luminosity), and thus corresponds to a
(not entirely explained) fundamental plane1 relation, even with approximately the
right slope (Mbulge ∼ σ 5).

However, as we have seen, the M•–σ relation appears much tighter. As a
constraint, it has to survive subsequent mergers in the scenario of hierarchical
structure formation without being disrupted. Fundamental plane relations also
survive merging, but are generally less tight. To add to the ‘problem’, it appears
that another very close relation may have been found very recently: Graham
et al (2001) report that the correlation between M• and the light concentration
within a bulge’s half-light radius is as tight (in fact, statistically slightly tighter)
as the M•–σ relation. Since the central condensation can be determined from
surface photometry alone, it might be possibly to estimate M• from fairly simple
observations.

In any case, it is probably necessary to look for an additional feedback
mechanism during bulge formation that directly connects the black hole mass, the
stellar velocity dispersion and possibly (if the Graham et al result is confirmed)
the central light concentration.

1 Fundamental plane: the parameter space spanned by the luminosity density, radius, and average
kinetic energy of stars in an elliptical galaxy is a plane.
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Some possibilities for explaining the M•–σ relation have been suggested,
one even before its discovery (Silk and Rees 1998). They propose that black
holes form even before bulges from the collapse of ∼ 106M� gas clouds, which
then accrete and radiate. This drives a wind which acts back on the accretion
flow. In this scenario, the black holes have to form very early. Alternatively,
black holes can be thought to grow naturally in mergers. The feedback may then
be supplied by gas cooling balanced by energy input through supernovae. The
impact of this energy input may be stronger for smaller galaxies with shallower
gravitational potentials (Kauffmann and Haehnelt 2000, Haehnelt and Kauffmann
2000). Burkert and Silk (2001) also consider black hole growths in mergers, but
suggest a somewhat different feedback mechanism: in their model, the accretion
is halted when star formation begins to exhaust the gas supply in the outer
accretion disk.

All these models result in an M•–σ relation with roughly the expected slope,
at least after some fine-tuning. However, they all have problems in explaining
why the relation appears so tight. Thus, much work, both observationally and
theoretically, remains to be done until the role of the M•–σ relation in the process
of galaxy evolution is fully understood.
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Chapter 3

The collapse to a black hole

Gernot Neugebauer
Friedrich-Schiller-Universität Jena, Germany

Now we have a broad view of the Milky Way, we turn back to the stars within the
framework of general relativity. The purpose of this chapter is to review some of
the astrophysical aspects of stellar black hole formation. When the nuclear fuel
is exhausted, stars contract inwards under the influence of their own gravity. Our
knowledge about the final stages of this collapse suggests that sufficiently massive
stars inevitably leave black hole remnants, i.e. regions of spacetime in which
gravity is so strong that neither matter nor light can ever escape. We discuss
two collapse solutions of the Einstein equations. Whereas the Oppenheimer–
Snyder model conveys the principal understanding of the dynamical transition to
a (spherically symmetric) non-rotating black hole (collapse time, formation of the
event horizon, communication problems of different observers), the parametric
collapse of a rotating disk of dust suggests a preference for the extremely rotating
(Kerr) black hole and a separation of spacetime domains.

3.1 Introduction

One of the most exciting predictions of Einstein’s gravitational theory is that
regions of spacetime in which gravity is so strong that neither matter nor light
can ever escape exist. We owe this picture to a small number of stationary
(axisymmetric) black hole solutions (Schwarzschild, Kerr, and Kerr–Newman
solutions), whose sources consist of a physical singularity surrounded by an event
horizon.

However, a large number of other stationary solutions with isolated
singularities of completely different mathematical structure exist, so that we have
to wonder whether and why only black holes should arise in reality. In this
chapter, we will try to find an answer in the context of stellar evolution. As we will
see, our understanding of the evolution processes now suggests that sufficiently
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massive stars inevitably leave black hole remnants1. To see this, we need not
discuss all steps of stellar evolution. It is sufficient to consider the final stage
when nuclear fuel is exhausted and the star contracts slowly inwards under the
influence of its own gravity thereby squeezing its pressure-sustaining electrons or
photons onto its atomic nuclei. (From a macroscopic point of view its equation
of state becomes softer.) The complex mathematical description of the resulting
instability and the following implosion connected with mass ejection is beyond
the scope of this chapter. Rather we will focus our attention on the question of
whether the collapse can lead to stable stellar end products. If nuclear burning
has finished, there is no thermal pressure balancing the star’s self-gravitation.
Hence the question is whether there are sufficiently high repulsion forces at all.
Inspecting the different areas of physics we arrive at quantum physics and, with
some knowledge of the structure of stars, at the repulsion forces of degenerate
Fermi gases consisting of electrons or nucleons. The observation of white dwarfs
and neutron stars confirms this picture.

White dwarfs can be thought to consist of two partial gases: free (highly
degenerate) electrons and ionized nuclei forming a ‘normal’ gas. Only the
degenerate electron gas will contribute a non-negligible amount to the pressure
which supports the star against the gravitational forces. However, the massive
nucleons must be considered to be the main source of gravitation.

Following Fowler [1] and Chandrasekhar [2], the quantitative (mathematical)
description may start from a spherically symmetric static (non-rotating) fluid ball
with the equation of state of the cold degenerate electron gas which can be written
in a parametric form as

p = mec2

8π2λe
3

{
x(1+ x2)1/2

(
2

3
x2 − 1

)
+ ln[x + (1+ x2)1/2]

}
ρ � ρ0 = µemB

3π2λe
3

x3 (x is a parameter)

connecting the isotropic (hydrostatic) pressure p and the mass density ρ, where
ρ can be approximated by the mass density of the nucleons ρ0. The constants
me,mB, c, and λe denote the electron mass, the baryonic mass, the velocity of
light, and the de Broglie wavelength, respectively. The number of baryons per
electron µe reflects the white dwarf’s composition which depends on the fusion
processes in the progenitor stars. (One of Chandrasekhar’s original models uses
µe = 2 for white dwarfs consisting of helium; other compositions can be read
off from figure 3.1). Once p = p(ρ) is given, the spherically symmetric,
static gravitational field equations can be integrated. A concise reformulation
of the Einstein equation was given by Tolman, Oppenheimer, and Volkoff (TOV
equations, see chapter 1, equations (1.89)–(1.92), this volume). It turns out though
that Newtonian gravity is accurate enough to discuss white dwarf models.

1 It should be mentioned, moreover, that black holes may also occur under other circumstances, e.g.
as galactic or cosmological (‘primordial’) black holes.
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Figure 3.1. The relation between radius R and mass M for several white dwarf models.
Depicted are curves for zero-temperature stars composed of helium, carbon, magnesium,
and iron. The dashed curves denote Chandrasekhar’s original models (the upper one for
µe = 2). There is a maximum mass of about 1.4 solar masses (adapted from Shapiro and
Teukolsky [3]).

The mathematical problem consists in solving a set of ordinary differential
equations for quantities depending on the radial coordinate r alone. One of these
quantities is the mass density ρ = ρ(r, R), where R denotes the radius of the
star. Integrating over the volume, one obtains a relation between the mass M
of the star and its radius R. Figure 3.1 adopted from the monograph of Shapiro
and Teukolsky [3] shows several mass versus radius curves R = R(M) for white
dwarf models of different composition. The most remarkable result of the analysis
as represented in figure 3.1 is the existence of a maximum mass of about 1.4 solar
masses which cannot be exceeded by white dwarfs. This theoretical prediction
has been confirmed by observation: all of the more than 1000 registered white
dwarfs have masses smaller than 1.2 solar masses. In accordance with theoretical
calculations their observed radii are planet-like (R ∼ 8000 km).

Neutron star models were first worked out by Landau [4], Baade and Zwicky
[5], and Oppenheimer and Volkoff [6]. They are based on the predominance of
neutrons in the star matter after the characteristic collapse phases of the progenitor
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star. The dominant effect is the mutual elimination of electrons and protons by
inverse β-decay. Roughly speaking, a neutron star is a ‘giant nucleus’ formed
by degenerate neutrons (1057 baryons/star) and held together by its huge self-
gravity. The mathematical analysis of the spherically symmetric non-rotating
(static) model follows the white dwarf analysis step by step. The main problem is
to gain realistic equations of state (cf [7]) for the different zones of the star (central
neutron lattice, neutron fluid, crust, cf [8]) from nuclear physics. Again, the mass
density ρ = ρ(r, R) and the mass–radius relation M = M(R) can be calculated
from the TOV equations (specified Einstein equations). Examples of mass versus
radius curves calculated by means of different realistic equations of state are
shown in figure 3.2 (adapted from [3]) and exhibit again that there are maximum
masses which cannot be exceeded by neutron stars. Obviously, the characteristic
values of these mass limits range from 1.4 to 3 solar masses; characteristic neutron
star radii amount to 11–15 km. An inaccessible domain for any mass versus radius
curve (gray domain in figure 3.2) independent of the equation of state (‘Buchdahl
limit’) exists. This fact is a rigorous consequence of the Einstein equations for
spherically symmetric static perfect fluid balls (‘stars’) which have no regular
solution for2 R < 9/8 × (2GM/c2) (this can be inferred from the integration
of the TOV equation, cf Stephani’s textbook [9]). As we have seen in chapter 1
there is an explicit solution to the static spherically symmetric Einstein equations
with constant mass density ρ (‘Schwarzschild solution’). The corresponding
mass versus radius relation M = (4/3)πρR3 is sketched in figure 3.3 for
‘nuclear densities’. The maximum masses as well as the corresponding radii of
these simple models are a consequence of the principal fundamental relativistic
limitation R < 9/8 × (2GM/c2) and are not far from the realistic values of
figure 3.2 (ρ = 1015 g cm−3 → M ∼ 3.6M�, R ∼ 11.9 km, M� is the solar
mass). The model fails for lower mass densities for which a constant density
throughout the star is not realistic.

The discovery of neutron stars is based on the pulsar mechanism: rapidly
rotating neutron stars (periods of 10−3–103 s) endowed with huge magnetic fields
(∼ 107–109 Tesla) emit electromagnetic radiation (radio waves, X-rays) along the
axis of the magnetic field. This radiation can be detected as a regular sequence of
pulses which arrive at the terrestrial observer whenever the beam of the ‘cosmic
lighthouse’ meets the earth. Astronomers know more than 800 radio pulsars and
more than 700 X-ray pulsars and, in addition, about 10 binaries consisting of two
neutron stars or combinations of neutron stars and white dwarfs. Most important
for general relativity is the double star pulsar PSR 1913+ 16, a system consisting
of two neutron stars of 1.4409 (±5) and 1.3876 (±5) solar masses, respectively
(cf [10]). From the observed approach of the stars one can calculate the loss
of mechanical energy. It corresponds exactly to the energy loss by gravitational
radiation, as predicted by general relativity. This fact is considered to be the first
(indirect) evidence for the existence of gravitational waves.

2 G , gravitational constant; c, velocity of light.
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Figure 3.2. The relation between mass and radius for several neutron star models.
None of the curves reflecting different equations of state exceeds a mass limit of about
three solar masses (adapted from Shapiro and Teukolsky [3]). Einstein’s theory itself
forbids a penetration of mass–radius curves into the domain limited by the straight line
R = (9/4)(G M/c2).

Let us summarize the quintessence of these introductory remarks: no
physical mechanism is known to form end products of stellar evolution which
exceed the maximum mass of about three solar masses. One might well ask
whether there are mass ejection processes during the star evolution preventing
the formation of more massive end products. For example, one could think
of fundamental processes limiting the cores of supernova explosions to masses
smaller than 3 solar masses. To the best of our knowledge such mechanisms
do not exist. On the contrary, models of stellar evolution suggest that the ‘total’
collapse is inevitable if the initial stellar mass exceeds some critical value of about
80 solar masses.

As a consequence of Newton’s gravitational theory, the inevitable collapse
of a spherically symmetric mass distribution ends in a singular point (mass point).
We will see in the next section that Einstein’s theory foresees a more interesting
fate; namely the formation of a black hole. It should be mentioned that a stellar
collapse is merely one scenario for black hole formation. Accretion of gas by
a white dwarf or a neutron star or the merging of two neutron stars (binaries)
are considered to be further black hole forming processes. Moreover, primordial
‘mini’-black holes (MBH ∼ 1015 g) generated by perturbations in the early



Oppenheimer–Snyder collapse 77

Figure 3.3. Mass versus radius relation for two ‘Schwarzschild stars’ with neutron star
densities. Though unrealistic because of its constant mass density, the high density model
provides a plausible maximum mass of about 3.6 solar masses.

Universe—and galactic black holes—come up for discussion.

3.2 Oppenheimer–Snyder collapse

3.2.1 Scenario and model

The Oppenheimer–Snyder model [11] describing the inevitable collapse of a ball
of dust to a black hole is an exact solution of the general-relativistic field equations
of gravitation. Rigorous solutions like this one are very important for deeper
insight into the four-dimensional spacetime structure and enable us to ask correct
physical questions in the context of general relativity. The point made here is to
understand the formation of a black hole from ‘normal’ matter. Of course, dust is
not very realistic in view of the complex structure of real collapsing stars.

Let us now model the main stages of a collapse:
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(i) Stationary phase before the collapse: the star could be thought to be a static
spherically symmetric perfect fluid ball with the energy–momentum tensor

Tik = (ρ + p)ui uk + pgik (3.1)

where ρ, p, ui , and gik are the mass density, the pressure, the four-velocity
of the mass elements, and the metric respectively. (Units are chosen such
that G = c = 1.) One could, e.g., think of the (interior and exterior)
Schwarzschild solution, cf chapter 1).

(ii) End of nuclear burning and start of the collapse: all of a sudden, the pressure
p breaks down (p = 0). For a moment, the resulting ball of dust (p = 0)
with

Tik = ρui uk (3.2)

remains at rest.
(iii) Phase of collapse: since there is no pressure to balance gravity, the ball (star)

begins to shrink. For dust, we expect an inevitable collapse and, finally, the
formation of a black hole.

3.2.2 Solution of the field equations

3.2.2.1 The problem

To obtain the spacetime line element

ds2 = gik dx i dxk (i, k = 0, 1, 2, 3; summation convention) (3.3)

for the collapsing ball of dust, we have to integrate the Einstein equations

Rik − R

2
gik = 8πTik (3.4)

where

Tik = ρui uk inside the ball (star)

Tik = 0 outside the ball (star). (3.5)

The solution must be asymptotically flat (gik → ηik at infinity, the ‘boundary
value problem’) and regular everywhere for all times t ≥ 0. According to our
model, the star should be at rest for t = 0 (the ‘initial value problem’). To
solve the boundary/initial value problem, we will solve the interior and exterior
field equations separately and match the interior to the exterior part afterwards
(‘matching problem’). The procedure relies heavily on spherical symmetry.
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3.2.2.2 Exterior solution

An aid to the understanding of the following material can be gained by reading the
appropriate passages of the excellent book from Misner, Thorne and Wheeler [12]
(known as MTW).

Spherical symmetry means that ds2 in (1.3) is form invariant under the group
of spatial orthogonal transformations and can therefore be put in the form

ds2 = gABdx Adx B + r2d�2

d�2 := dϑ2 + sin2ϑ dϕ2 (A, B = 0, 1) (3.6)

where (gAB) and r are functions of x0 and x1 alone,

gAB = gAB(x
0, x1) r = r(x0, x1) (3.7)

and x2 = ϑ(0 ≤ ϑ ≤ π) and x3 = ϕ(0 ≤ ϕ ≤ 2π) are the usual spherical
coordinates.

The line element (3.6) may further be reduced by a suitable choice of
the coordinates (x0, x1). The following three examples are useful for collapse
discussions:

(i) Schwarzschild coordinates:

ds2 = −eν(t,r) dt2 + eλ(t,r) dr2 + r2 d�2. (3.8)

This form may be obtained by a coordinate transformation r = r(x0, x1),
t = (x0, x1).

The vacuum equations (3.4), (3.5),

Rik = 0 (3.9)

give ∂λ/∂ t = 0, ∂2ν/∂ t2 = 0, first of all, and after a time scaling of the form
t ′ = t ′(t) the exterior Schwarzschild solution

ds2 = −
(

1− 2M

r

)
dt2 + dr2

1− 2M/r
+ r2 d�2 (3.10)

where M is the reduced mass of the star. (Note that we have put G = 1, c = 1.
Hence we do not distinguish between the mass M measured in kilograms and the
reduced mass MG/c2 expressed in metres.) Obviously, the only vacuum solution
with spherical symmetry is the exterior Schwarzschild solution3 (Birkhoff’s
theorem, 1923) and that solution is static. As a consequence, a collapsing
spherically symmetric star cannot emit gravitational waves. The Schwarzschild
metric (3.10) is regular for r > 2M and has, apparently, a singularity at the
3 MTW formulation, cf MTW [12]: let the geometry of a given region of spacetime (i) be spherically
symmetric and (ii) be a solution to the Einstein equations in vacuum. Then that geometry is necessarily
a piece of the Schwarzschild geometry.
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Schwarzschild radius r = 2M . However, the geometry (the curvature tensor) is
regular there. Thus, ‘better’ coordinates in the domain r ≤ 2M must exist.

(ii) Kruskal–Szekeres coordinates:

ds2 = b(du2 − dv2)+ r2 d�2, b = b(u, v), r = r(u, v). (3.11)

Any two-metric (such as gAB in (3.6)) is conformally equivalent to a flat two-
metric. We have put x0 = u, x1 = v. Inserting (3.11) into the field equations
(3.9), we obtain b = b(u, v) and r = r(u, v),

ds2 = 32M3

r
e−r/2M

(
du2 − dv2

)
+ r2d�2( r

2M
− 1

)
er/2M = u2 − v2. (3.12)

The Kruskal–Szekeres coordinates (u, v) are related to the Schwarzschild
coordinates by

u =
( r

2M
− 1

)1/2
er/4M cosh

(
t

4M

)
v =

( r

2M
− 1

)1/2
er/4M sinh

(
t

4M

) when r > 2M

u =
(

1− r

2M

)1/2
er/4M sinh

(
t

4M

)
v =

(
1− r

2M

)1/2
er/4M cosh

(
t

4M

) when r < 2M. (3.13)

There is no coordinate singularity at r = 2M . Kruskal–Szekeres coordinates are
well suited for the global analysis of black holes.

(iii) Ingoing Eddington–Finkelstein coordinates:

ds2 = −
(

1− 2M

r

)
dV 2 + 2dV dr + r2 d�2. (3.14)

This line element can be obtained from (3.10) by the coordinate transformation

r = r V = t + r + 2M ln
∣∣∣ r

2M
− 1

∣∣∣ . (3.15)

The coordinates are adapted to ingoing light rays V = constant, cf MTW [12].

3.2.2.3 Interior solution

The field equations (3.4) together with the dust matter model (3.5) imply local
mass conservation

(ρui );i = 0 (3.16)
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and geodesic motion of the mass elements,

Dui

Dτ
= ui ;kuk = 0. (3.17)

Equations (3.16) and (3.17) are a direct consequence of the local energy–
momentum conservation,

T ik ;k = 0.

To get a manageable model, we are on the look-out for further hydrodynamic
simplifications. Because of the radial motion of the mass elements, the vorticity
of the four-velocity has to vanish. Let us assume, in addition, that the motion be
shear free. Then we arrive at [13],

ui;k = 1
3 um ;m(gik + ui uk). (3.18)

(Note that (3.18) implies ui,k−uk,i = 0 whence Dui/Dτ = 0.) We may now
choose the world lines of the mass elements to be the time lines (‘comoving
coordinates’),

(ui ) = (1, 0, 0, 0). (3.19)

Then, by means of (3.18), the line element (3.3) can be put in the following form

ds2 = −dt2 + a2(t, x1, x2, x3)gab dxa dxb (3.20)

where gab does not depend on t .
As a consequence of the field equations (3.4) for dust (3.5), the subspace t =

constant has a constant (vanishing, positive or negative) curvature. Introducing
spherical coordinates χ (0 ≤ χ < χ0), ϑ (0 ≤ ϑ ≤ π), ϕ (0 ≤ ϕ ≤ 2π), the line
element (3.20) takes the form

ds2 = − dt2 + a2(t)(dχ2 + f (χ)[dϑ2 + sin2 ϑdϕ2])
f = (χ2, sin2 χ, sinh2 χ) (3.21)

where f characterizes the three curvature types. The remaining field equations
(and their consequence (3.16)) reduce to the simple first-order system

3(ȧ2 + ε) = 8πa2ρ
d

dt
(ρa3) = 0 (3.22)

where ε = (0, 1,−1) corresponds to the three values of f , and a dot denotes time
derivative.

The line element (3.21) describes the interior geometry of an expanding
(ȧ > 0) or contracting (ȧ < 0) dust ball. Its three-surface χ = χ0 is the interface
to the exterior Schwarzschild region. Interestingly, our initial value problem (‘star
at rest’),

t = 0 : a(0) = am ȧ(0) = 0 (3.23)
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singles out positive curvature,
ε = 1. (3.24)

(ε = 0,−1 is not compatible with ȧ(0) = 0 in (3.22).)
Then the solution of (3.22)–(3.24) is given by

a = am

2
(1+ cos η) t = am

2
(η + sin η) ρ = 3am

8π
a−3 (3.25)

where
0 ≤ η ≤ π.

The equations (3.25) describe a dust ball whose scale factor a(t) shrinks from the
initial value a = am(η = 0, t = 0) to zero (η = π, t = πam/2).

The dust model has a fundamental meaning for cosmology: the equations
(3.21), (3.22) describe the geometry and mass distribution of an open (ε = 0,−1)
or closed (ε = 1) Friedman universe.

We have now to match the interior (Friedman) (3.21), (3.25) and the exterior
(Schwarzschild) solution.

3.2.2.4 Matching of geometries

The interface between the interior and exterior geometry is formed by the
geodesic (world) lines of the mass elements on the surface of the dust ball. This
‘world tube’ can be described in the interior as well as in the exterior coordinates.
In interior coordinates, the radial surface geodesics are characterized by the
equation x0 = τ (cf (3.19), dx0/dτ = 1) and constant values of ϑ, ϕ, χ for
all proper times τ ≥ 0,

τ ≥ 0 : x0 = τ, ϑ = ϑ0 (0 ≤ ϑ0 ≤ π)
χ = χ0, ϕ = ϕ0 (0 ≤ ϕ0 ≤ 2π). (3.26)

However, the same world lines have to be radial geodesics of the exterior
Schwarzschild solution (3.10). Integrating the underlying equation

d2xi

dτ 2
+ �i

kl
dxk

dτ

dxl

dτ
= 0 (3.27)

for the initial values

τ = 0 : r(τ = 0) = r0, ṙ(τ = 0) = 0 (ϑ = ϑ0, ϕ = ϕ0) (3.28)

we obtain

τ ≥ 0 (η ≥ 0) :

r = r0

2
(1+ cos λ) τ =

√
r3

0

8M
(λ+ sin λ)

t = 2M ln

∣∣∣∣√r0/2M − 1+ tanλ/2√
r0/2M − 1− tanλ/2

∣∣∣∣+ 2M

√
r0

2M
− 1

[
λ+ r0

4M
(λ+ sinλ)

]
(3.29)



Oppenheimer–Snyder collapse 83

where the real parameter λ is restricted by

0 ≤ λ ≤ π. (3.30)

Obviously, τ = 0 corresponds to the parameter value η = 0.
The identification of the equations (3.26) and (3.29) requires coordinate-free

criteria. It can easily be seen that the proper time τ ,

dτ 2 = − ds2 = −gAB dx A dx B − r2(x0, x1)(dϑ2 + sin 2ϑ dϕ2)

x0 = t (3.31)

and the circumference C(τ ) of the three-dimensional interface (‘world tube’)
along the slice S : x A = constant (A = 0, 1), ϑ = π

2 ,

C(τ ) =
∫

S
ds =

∫ 2π

0
r(x0, x1) dϕ = 2πr(x0, x1) (3.32)

have an invariant geometrical meaning. Making use of the equations (3.21),
(3.25), and (3.26), we obtain in interior coordinates

τ = t = am

2
(η + sin η) (0 ≤ η ≤ π)

C(τ ) = πam(1+ cosη) sinχ0 (3.33)

whereas, according to (3.29), the calculation in exterior coordinates yields

τ =
√

r3
0

8M
(λ+ sin λ)

C = πr0(1+ cosλ) (0 ≤ λ ≤ π). (3.34)

From the identification of the equations (3.33) and (3.34) we have

λ = η r0 = am sinχ0 M = am

2
sin3 χ0 (0 ≤ η ≤ π). (3.35)

Thus the ‘interior’ constants am and χ0, describing the maximum extension of the
star (a = am) and its surface (χ = χ0), can be expressed in terms of the star’s
total mass M and its maximum ‘radius’ r0.

It can be shown that the (necessary) conditions (3.35) are sufficient to glue
together smoothly the pieces of Friedman geometry describing the star’s interior,

ds2 = −dt2 + a2(t)[dχ2 + sin 2χd�2] (3.36)

a(t) as in (3.25) 0 ≤ χ ≤ χ0

and Schwarzschild geometry describing its exterior,

ds2 = −
(

1− 2M

r

)
dt2 + dr2

1− 2M/r
+ r2d�2 (3.37)

r(t) ≤ r <∞ r(t) as in (3.29).
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Both pieces of geometry glued together smoothly along the interface form only
one solution to the Einstein equations. It describes a collapsing model star whose
circumference shrinks permanently from C = 2πr0 (λ = 0, ‘star at rest—start of
collapse’) to C = 0 (λ = π , ‘end of collapse’).

3.2.3 Physical interpretation

According to (3.36), there is no obvious geometrical singularity during the
collapse, not even when a mass point of the star’s surface reaches the ‘dangerous’
coordinate value r = 2M in (3.37). This is a clear hint to change the coordinate
system (3.37) and to introduce ‘better’ exterior coordinates, as, e.g., Kruskal–
Szekeres or Eddington–Finkelstein coordinates.

To obtain the world line of a surface point of the star in Eddington–
Finkelstein coordinates, one has to insert the surface geodesics (3.29) into the
coordinate transformation (3.15),

r(λ) = r0

2
(1+ cos λ) τ =

√
r3

0

8M
(λ+ sin λ)

V (λ) = r(λ)+ 2M ln

∣∣∣∣r(λ)2M
− 1

∣∣∣∣+ 2M ln

∣∣∣∣√r0/2M − 1+ tanλ/2√
r0/2M − 1− tanλ/2

∣∣∣∣
+ 2M

√
r0

2M
− 1

[
λ+ r0

4M
(λ+ sin λ)

]
(0 ≤ λ ≤ π).

(3.38)

The diagram shown in figure 4 was taken from MTW [12, p 849]. It uses
slightly modified Eddington–Finkelstein coordinates

Ṽ = V − r r̃ = r (3.39)

and illustrates the collapse of a star whose radius r drops from r0 = 10M to r = 0.
According to (3.38), the proper time interval �τ of the collapse, as measured by
a comoving observer placed on the star’s surface, is surprisingly short4

�τ =
√
(10M)3

8M
π ∼ 35.1M. (3.40)

Even the critical radius r = 2M is reached in a similarly short proper time of
�τ = 33.7M . Since, as we will see, this event marks the birth of a black hole,
an external observer placed at fixed spatial coordinate values (at r = 10M in
figure 3.4) could ask him- or herself after a while whether the black hole had

4 The corresponding proper time expressed in seconds for a dust ball with the radius and the mass of

the sun is �τ = 1
c

√
(0,696)3·1018

11,84 π km � 1768 s (c = 2.997 × 105 km s−1).
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Figure 3.4. Oppenheimer–Snyder collapse in modified Eddington–Finkelstein coordinates
(adapted from MTW [12]). The diagram depicts a series of photons emitted radially from
the surface of the collapsing star and received by an observer at r = r0 = 10M . Any
photon emitted radially at the Schwarzschild radius r = 2M stays at r = 2M forever. This
external event horizon is the continuation of the internal event horizon (full curve in the
shaded interior region of the star).
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already formed or not. The scenario sketched in figure 3.4 demonstrates that
such a question is ill posed. To communicate with each other, the comoving
observer and the external observer could exchange light signals (photons). Since
the Eddington–Finkelstein coordinates (3.14) are adapted to radial ingoing light
rays (V , ϑ, ϕ : constants, ds2 = 0), the world line of an ingoing photon in the
modified coordinates (3.39) is given by

ds2 = 0 : Ṽ = V − r V = constant. (3.41)

All ingoing null rays are parallel to the one sketched in figure 3.4, i.e. all photons
emitted from the external observer reach the domain r = 0. According to (3.14),
we get for the outgoing light rays describing photons emitted from the surface of
the collapsing star

ds2 = 0 : Ṽ (r) = V − r = r + 4M ln
∣∣∣ r

2M
− 1

∣∣∣+ D D = constant.

(3.42)

One may fix the constant D = D(η) from the intersection with the star’s
surface (3.38). Figure 3.4 depicts a series of such photon world lines emitted
from the surface of the collapsing star and received by the observer at r = 10M .
It illustrates the way in which the external observer distinguishes the collapse.
Consider a series of uniformly spaced light signals emitted by the comoving
observer. Received at the external observer, they would become more and more
widely spaced. Finally, any photon emitted at r = 2M stays at r = 2M forever
and can never reach the external observer. For this reason, the domain r = 2M
is called the event horizon. In the diagram it is marked by the world line of the
photon emitted from r = 2M . After the Schwarzschild radius r = 2M has been
passed, the external observer never receives a signal: all photons emitted from the
star’s surface are sucked into the singularity at r = 0, which is a real singularity
of spacetime geometry.

Let us now return to the question of black hole formation. From the point of
view of the external observer, the star never gets beyond its Schwarzschild radius
r = 2M . This seems to contradict the observation of the comoving observer that
the star rapidly reaches r = 2M and r = 0. A physicist, who applies Einstein’s
theory, must not identify his or her position with that of the external or the
comoving observer. The physicist knows the geometry of the four-dimensional
spacetime, the world lines of matter and observers, and the physical processes in
spacetime. He can visualize this knowledge by four-dimensional diagrams such
as that in figure 3.4. This complete information enables him/her to formulate and
answer ‘reasonable’ (i.e. physical) questions. From his or her four-dimensional
point of view, the event ‘star surface passes the Schwarzschild radius r = 2M’
marks the formation of a black hole characterized by its event horizon. He or she
knows that processes of the black hole’s history, such as the emission of photons
from the star’s surface, can influence the remotest future of an external observer.
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The four-dimensional view of the gravitational phenomena connected with the
black hole formation requires the analysis of the internal geometry of the black
hole and the processes inside the black holes, too. The internal part of spacetime
cannot be ignored with the argument that the external observers (as we are) will
never obtain information from the interior.

The Eddington–Finkelstein coordinates are adapted to the vacuum domain
outside the star. To depict the world lines of the mass elements or to extend the
event horizon to the interior of the star (gray domain in figure 3.4), one needs
‘internal’ Eddington–Finkelstein coordinates. The extension is not unique. An
obvious choice is to use in (3.36) radially ingoing light rays5 V = constant and
the radial coordinate r = a(t) sinχ .

V (χ, t) = F(χ + η(t)) t = am

2
(η + sin η)

r = r(χ, t) = a(t)sinχ a(t) = am

2
(1+ cosη(t)) (3.43)

where F is an arbitrary function of χ + η. F can be fixed by the identification of
the internal ingoing light rays V = F(χ + η) = constant with the external light
rays V = constant along the surface.

The horizon inside the star consists of those outgoing geodesic lines that
meet the external event horizon at the star’s surface χ = χ0,

V = F(2χ − 3χ0 + π)
r = am

2
(1+ cos[χ − 3χ0 + π])sinχ (3.44)

(0 ≤ χ ≤ χ0).

In figure 3.4, the internal event horizon is depicted by the full line inside the star.
All internal ingoing light rays ‘beneath’ that line arrive at the surface before

the black hole has passed through its Schwarzschild radius r = 2M and can
therefore escape to infinity. The light rays beyond the line arrive at the surface
inside the black hole and get pulled into the singularity at r = 0.

Unfortunately, there is not enough space for a detailed discussion of further
effects in this chapter. Following the textbook of MTW [12], I confine myself to
a description of some interesting results.

Light propagation. Light emitted from the collapsing star becomes more and
more redshifted and reaches a relative redshift limit of z � 2 at a distant external
observer. The total luminosity decays exponentially in time. Light from the star
in its late stages (before the black hole transition) is not dominated by ‘radial
photons’ but by photons that were deposited by the star in (unstable) circular
orbits as its surface passed through r = 3M .

Fate of the star beyond its horizon. The star and the entire internal geometry
collapse inevitably in a spacetime singularity which crushes the collapsing matter
to infinite density.
5 Insert V in (3.36) in order to verify that V = constant describes ingoing light rays.
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Fate of the comoving observer. There are no special problems at r = 2M
(imagine the ‘soft’ formation of a huge galactic black hole of 106 solar masses!)
Eventually, the observer crushes to zero volume and indefinitely extended length
at r = 0.

The Tolman–Oppenheimer model has been generalized for other dust balls
[14, 15] and different energy–momentum tensors [16]. Special attention is being
paid to the non-spherical collapse as a source of gravitational radiation. There
is justified hope that gravitational waves emitted from type IIa supernovae and
other collapsing cosmic sources could be detected with the aid of the laser
interferometers of the VIRGO, LIGO, or GEO 600 projects.

Most insiders are convinced that the end product of a non-spherical collapse
with non-vanishing angular momentum is a rotating black hole whose external
geometry is described by the stationary and axially symmetric Kerr solution (see
Hawking and Ellis [17] for a review) which, in turn, is determined uniquely by
the parameters of mass and angular momentum. It would be highly desirable
to elaborate more precisely on such an assertion. Before that, the question
remains undecided as to whether cosmic collapse processes lead inevitably to
the formation of black holes. Another very important problem is the question
whether the singularity at the end point of spherical collapse is typical for all
collapse processes or whether it can be removed in more general collapses. Such
questions were first analyzed by Penrose [18] and Hawking and Penrose [19].
For an introduction to the analysis of singularities one should study the book of
Hawking and Ellis [17].

3.3 Rotating matter and black hole formation

Unfortunately, the scenario described in the preceding section cannot be extended
without difficulty to matter with angular momentum. Though we do not possess
a dynamical model for collapsing matter, we expect some insight into the process
of the formation of rotating black holes by the discussion of an ‘adiabatic’
transition. For this purpose, we consider a stationary and axisymmetric global
solution to Einstein’s equations describing a rigidly (uniformly) rotating disk of
dust. The solution allows a ‘parametric’ collapse, i.e. it has a black hole limit
for characteristic values of its parameters. In the following we present some
details of the solution which has been found by Neugebauer and Meinel [20]
as the solution of a boundary value problem first formulated and approximately
solved by Bardeen and Wagoner [21, 22] (see [23] for a review).

The line element of any stationary and axially symmetric solution for
isolated and uniformly rotating sources can be cast into the form

ds2 = −e2U (dt + a dϕ)2 + e−2U (e2k[dr2 + dz2] +W 2 dϕ2) (3.45)

where r, z, ϕ are cylindrical coordinates. The Newtonian gravitational potential
U , the gravitomagnetic potential a, the superpotential k, and the aximuthal
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Figure 3.5. Relation between �M and M2/J for the Newtonian Maclaurin disk (broken
curve), the general-relativistic dust disk and the Kerr black hole. The plot illustrates the
phase transition from the disk to the black hole at M2 = J .

potential W depend on r and z alone, i.e. the metric (3.45) allows an Abelian
group of motions G2 with the generators (Killing vectors) ξ i , ηi ,

ξ i = δi
t , ξ iξi < 0 stationarity

ηi = δi
ϕ, ηiηi > 0 axisymmetry. (3.46)

Outside matter, one may choose W = r .
Rotational motion of the matter about the symmetry axis z means

ui = e−V (ξi +�ηi ) ui u
i = −1 (3.47)

i.e. the four-velocity ui is a linear combination of the Killing vectors. For rigidly
rotating bodies, such as our disk of dust, the angular velocity is a constant

� = constant. (3.48)
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Figure 3.6. Geometry in the disk plane. The circumferential diameter C/π of a circle
around the centre of the disk versus the real distances from the centre for increasing values
of µ (here �C/π and �s are dimensionless quantities, c = 1) are depicted.

The task of solving the Einstein equations with the energy–momentum tensor
(3.5) for an infinitesimally thin rigidly rotating disk of dust leads to the following
boundary value problem: find a regular solution of Einstein’s vacuum equations
in the form (3.45), where

(i) the line element (3.45) becomes Minkowskian at infinity,

r2 + z2 →∞: ds2 = −dt2 + dr2 + dz2 + r2dϕ2 (3.49)

and
(ii) the co-rotating potentials U ′ = V and a′, as measured by an observer

comoving with the disk, satisfy the conditions

z = 0, 0 ≤ r ≤ r0: U ′ = V0 = constant,
∂a′

∂z
= 0 (3.50)
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Figure 3.7. For ultrarelativistic values of µ (here µ = 4.5), the ‘interior region’ around
the disk (around the local maximum on the left-hand side) is far from the ‘exterior region’
(right-hand ascending branch of the curve), which becomes more and more Kerr-like.

in the disk (r0 is the coordinate radius of the disk).
Equations (3.47) and (3.46) imply

e2U ′ = e2U [(1+�a)2 − r2�2e−4U ] (3.51)

which means that the boundary conditions contain two constant parameters, V0
and �. Consequently, the disk of dust solution is a two-parameter solution.
Unfortunately, there is not enough space (or time) to write out the solution
explicitly and to prove the facts on which the following description is based.
Readers are referred to the original papers [20–23].

An impression of the ‘parametric’ collapse of the disk can be gained from
the parameter relations

V0 = V0(M, J ) � = �(M, J ) (3.52)

which connect the disk parameters V0 and�with the far-field parameters (energy-
mass) M and angular momentum J [23]. Figure 3.5 combines the parameter
relations between�M and M2/J for the classical Maclaurin disk (broken curve),
the general-relativistic disk, and the Kerr black hole. It indicates a phase transition
from the disk to the extreme Kerr black hole at M2/J = 1 and 2�M = 1. This
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� � � � � ��� � ���

Figure 3.8. In the limit µ = µ0, the ‘disk world’ (left-hand branch) and the ‘world of
the extreme Kerr black hole’ (right-hand branch) are separated from each other. The point
labelled ∞ on the abscissa corresponds to a coordinate radius r = 1/2�. Points of the
‘Kerr world’ (right-hand branch) are at infinite distance from the disk (in the left-hand
branch).

behaviour of rotating matter is completely different from that of static spherically
symmetric fluid spheres which have to obey the restriction R > (9/4)(GM/c2)

(R, radius; M , mass of the sphere) and can not therefore occupy the infinitesimal
neighbourhood (2GM/c2 ≤ R ≤ (9/4)(GM/c2)) of their black hole state at
R = 2(GM/c2) (see [9]). Figures 3.6–3.8, which correspond to the original
figures in [22], convey a more detailed picture of the parametric black hole
transition (‘collapse’) of the disk. They show the circumference C of a circle
in the disk plane (cf (3.32)) about the centre of the disk versus the real distance s
from the centre,

s =
∫ r

0
dr ′ exp[k(0, r)− U(0, r)] (3.53)

for different values of the parameter µ,

µ = 2�2r2
0 e−2V0 0 ≤ µ ≤ µ0 = 4.62966 . . . .

The limits µ→ 0 and µ→ µ0 mark the non-relativistic Maclaurin disk and the
ultra-relativistic limit, respectively. For increasing values of µ, figures 3.6–3.8
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illustrate a separation process for two domains of the disk solution which results,
as indicated in figure 3.8, in a disk world (left-hand branch, limit 1) at an infinite
distance from the world of an extreme (M2 = J ) Kerr black hole (right-hand
branch, limit 2). A detailed analysis of the complete solution confirms the result:
for µ → µ0, there are two limits of the disk spacetime. Whether or not this
phenomenon can also be found for a dynamical collapse must remain the fruit of
future work.
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Chapter 4

The environment of the Galaxy’s central
black hole

Mark R Morris
University of California, Los Angeles, USA

Back to the Milky Way, we now approach the Galactic Center black hole and study
the innermost 100 parsecs (about 300 light years) around it. Various components
interact with each other and may influence the feeding and activity of the black
hole: stars, molecular and hot gas, magnetic fields, and supernovae. Star
formation and black hole activity may be related in an ongoing cyclic behavior.

4.1 Introduction

At first glance, the Galactic Center region is apparently quite complex, especially
when one’s view spans a multitude of wavelengths. When the predominant
structures are sorted out, however, it becomes evident that there is really more
order there, in terms of scale, placement, and dynamics, than in almost any other
place in the Galaxy. The structural elements that compose this region include:

(1) a central few-hundred-parsec zone of dense molecular clouds embedded in a
hot, rarefied intercloud medium, all of which appears to be permeated by a
strong magnetic field;

(2) massive short-lived star clusters, and clear signs of energetic bursts of current
star formation;

(3) a sedate but dense cluster, or central cusp, of intermediate-age stars centered
on the nucleus;

(4) several supernova remnants which are undoubtedly important for the
dynamics of the region;

(5) a tumultuous, continuous disk of gas orbiting the nucleus on scales of a few
parsecs; and
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(6) of course, the centerpiece: the supermassive black hole lying at the
dynamical center of the whole system.

The astrophysical phenomenology of the Galactic Center serves as a standard
for understanding the nuclei of moderately gas-rich spiral galaxies in general and
active galactic nuclei in particular. Of course, we have the advantage in the case
of our own galaxy—located ∼100 times closer than the next nearest nucleus—
that its proximity allows us to observe important details that cannot be seen
elsewhere with current technology. Among other things, these details include the
structure of strong magnetic fields, the effects of strong tidal forces, the results
of dynamical friction acting on stars, star clusters and clouds, and the extreme
radiative environments near massive young clusters. A characterization of such
phenomena is necessary to construct a reasonably complete picture of how the
central black hole interacts with its environment. This chapter will describe the
essential elements of the Galactic Center region, and what is now known about
how each of them is relevant for the evolution and the activity of the central black
hole.

4.2 The nuclear stellar bulge

The first near-infrared (NIR) mapping observation of the Galactic Center by
Becklin and Neugebauer in 1968 revealed a central cluster of unresolved stars
distributed with radius r as r−1.8 on a scale of a few hundred parsecs (100 pc = 40
arcmin at a distance of 8 kpc). The infrared light from this cluster is dominated
by emission from red giant stars. This central cusp of stars, also called the
‘r−2 cluster’ or the ‘Nuclear Bulge’, is superimposed on the much larger-scale
(∼2.5 kpc) bulge of our Galaxy. The Galactic Bulge has a bar morphology,
as described in chapter 2. The three-dimensional morphology of the Nuclear
Bulge, which resides well within the old Galactic Bulge, has not been determined,
because of the difficulty in sorting out the highly variable extinction across the
inner few degrees of the Galaxy.

Figure 4.1 shows a NIR image of the central few hundred parsecs of the
Galaxy. The central cluster, or Nuclear Bulge, is evident among various patches
of foreground extinction. With 30 magnitudes of visual extinction to the Galactic
Center (a factor of 1012), the extinction at 2 µm is about three magnitudes (a
factor of ∼10). This cluster reaches a maximum density exceeding 107 M� pc−3

in an uncertain core radius of∼0.06 pc (Alexander 1999; Genzel et al 2000).
The history of the Nuclear Bulge is likely related to that of the Central

Molecular Zone (CMZ, described later and in chapter 2), given that they have
comparable physical scales and that the current star formation rate in the CMZ is
sufficient to populate the Nuclear Bulge, or r−2 cluster, over the lifetime of the
Galaxy (Serabyn and Morris 1996). According to this hypothesis, the Nuclear
Bulge is built up over a Hubble time by sustained star formation in the CMZ. The
extent of the Nuclear Bulge is evident from the COBE images, shown in figure 4.2
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Figure 4.1. Three-color, NIR image of the central 330 pc of the Galaxy, from the
2MASS Two Micron All-Sky Survey (2MASS). The Galactic plane runs through this
image at a position angle of about 30◦. (2MASS is a joint project of the University
of Massachusetts and the Infrared Processing and Analysis Center/California Institute
of Technology, funded by the National Aeronautics and Space Administration and the
National Science Foundation.) See also color section.

(from Launhardt et al 1992). The fact that the Nuclear Bulge is substantially
thicker than the cloud layer in the CMZ can be accounted for by the vertical
diffusion of stars formed in the CMZ (Kim and Morris 2001). On timescales of a
few Gyr, the scattering of stars by molecular clouds in the CMZ raises the stellar
scale height to values comparable to those of the older OH/IR stars, about 44 pc
(Lindqvist et al 1992).

The stars within the central parsec, where the Nuclear Bulge peaks, are
shown in figure 4.3. This cluster, with an overall mass estimated at ∼109 M�,
dominates the gravitational potential outside of about 1 pc. The black hole’s
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Figure 4.2. Surface brightness maps of the Nuclear Bulge, at nine wavelengths between
2.2 and 240 µm, as measured by the COBE satellite (from Launhardt et al 2002). These
images are corrected for both emission and foreground extinction by dust in the Galactic
Disk, and the emission from the much more extended Galactic Bulge has been subtracted.
Lowest contour levels are at 10% of the maximum in the NIR maps and 5% in all other
maps. Small boxes in the lower left of the maps show the DIRBE beam (HPBW =
0.7◦) at the corresponding wavelength bands. The middle and right-hand panels show
the corresponding longitude and latitude profiles at b = 0◦ and l = 0◦, respectively.

domain of influence is therefore quite small. In addition to the intermediate-
age stars residing in the core of the Nuclear Bulge, the central parsec contains
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Figure 4.3. Two-color (H: 1.65 µm and K′ : 2.1 µm) image of the center of the Nuclear
Bulge, showing a region 18 arcsc on a side (0.75 pc for a Galactic Center distance of 8 kpc).
These data were acquired with the QUIRC camera behind the Hokupa’a adaptive optics
system as part of the Demonstration Science Program of the Gemini North Telescope. See
also color section.

a luminous young cluster dominated by emission-line stars (Krabbe et al 1995;
Paumard et al 2001). The difficulty of estimating the core radius of the cluster is
attributable to the high luminosity of the emission-line stars, which overwhelms
the light from the older stars.

A very compact cluster of moderately luminous stars (mK = 14–16) lies
within 0.5′′ of the black hole: the Sgr A* (IR) cluster, discussed in detail in
chapter 8. The blue color and featureless K-band spectra of these objects (Genzel
et al 1997; Gezari et al 2002) indicate that they may be massive, young stars,
although if they are lower-mass stars heated by some process peculiar to the
immediate vicinity of the black hole, then they may represent the innermost
members of the Nuclear Bulge.
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Figure 4.4. Map of integrated CS J = 1–0 line emission, showing the spatial extent of
relatively dense clouds in the CMZ, as measured by the 45-m telescope of the Nobeyama
Radio Observatory (from Tsuboi et al 1999).

4.3 The Central Molecular Zone

Various lines of evidence indicate that a total of 5 × 107 M� of relatively dense
molecular gas are present in the CMZ, lying predominantly within ±150 pc of
the Galactic Center. This represents a much stronger concentration of interstellar
matter than anywhere else in the Galaxy. Figure 4.4 shows the bulk of the
CMZ as revealed by CS emission, which is a probe of moderately dense clouds
(nH2 ∼ 104 cm−3). The CMZ has already been described by Hüttemeister
(chapter 2); here we make a few additional points:

1. Tidal shear. The clouds in the CMZ are easily sheared into tidal streams
by the relatively strong differential gravitational forces present in the central
few hundred parsecs. A likely example is the ‘Galactic Center Bow’, shown in
figure 4.5, from Tsuboi et al (1999). This apparently single molecular structure
appears to extend over 300 pc in projection, and probably undergoes most of a
complete turn around the Galactic Center. The stability of clouds against such
tidal shear depends on their density. Güsten (1989) derived the following density
criterion for cloud stability as a function of galactocentric radius, R:

n ≥ 104 cm−3(75 pc/R)1.8. (4.1)

This condition helps explain why the density of molecular clouds in the CMZ
is typically substantially larger than the average molecular cloud density in the
Galactic disk. Only the densest molecular clouds in the CMZ, such as Sgr B2,
are immune to shear, and thus well localized, and even in those cases, the dense
cloud cores are surrounded by a sheared halo.

2. Residence time. Clouds in the CMZ are transient, because their orbital
angular momentum is lost by dynamical friction on timescales of several times
108 years (Stark et al 1991). Magnetic torques can cause angular momentum
loss on a comparable timescale, given the exceptionally strong magnetic field in
the CMZ (Morris 1994, and later). Consequently, the CMZ must be constantly
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Figure 4.5. CS J = 1–0 position-velocity diagram following the ridge of the
‘Galactic Center bow’ (Tsuboi et al 1999). The ridge is defined by the points
[l, b] = [−1.07,−0.20], [−0.75,−0.03], [−0.37, 0.05], [0.50, 0.05], and [1.73,−0.17].
Note how this structure is continuous over 2.5◦ (375 pc) and 250 km s−1, suggesting that
this is a single structure which has been subjected to tidal shearing. It probably wraps at
least halfway around the Galactic Center.

replenished, presumably by gas migrating inward from the Galactic disk (Morris
and Serabyn 1996; Morris 2001).

What, then, is the fate of the molecular gas which moves inward through
the CMZ? Sitting at the bottom of the Galactic potential well, it has only a few
possibilities: star formation, ejection in a hot galactic wind, and accretion onto the
central black hole. The latter possibility cannot account for any but a tiny fraction
of the inflowing gas. The mass of the central black hole and the currently inferred
accretion rate onto the black hole are too small by several orders of magnitude
for the black hole to be a significant sink for CMZ gas. A thermal galactic wind
is a possible contributor (discussed later), but the dominant sink for the CMZ gas
is probably star formation, occurring at a rate of a few tenths of a solar mass per
year.

3. Asymmetry. The CMZ is quite asymmetric about the Galactic Center,
with most of the gas, perhaps 70% of it, lying at positive Galactic longitudes. The
thermal dust emission which follows the molecular gas illustrates this asymmetry,
as can be seen in the longer-wavelength images of figure 4.2. This asymmetry,
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also present in the velocity field, could be the result of an m = 1 sloshing mode
in the gas of the CMZ (discussed by Morris and Serabyn 1996). Notably, the stars
do not appear to show a comparable asymmetry, although it would be interesting
to seek an asymmetry in the stellar distribution on the scale of the Nuclear Bulge
by carefully accounting for extinction. If an m = 1 oscillation is present in the
stars and gas at the Galactic Center, corresponding to coupled orbits of the CMZ
and Nuclear Bulge about a common center of mass, then the stars and the central
black hole would participate in this oscillation, which might manifest itself in
terms of their velocities.

4.4 Hot gas

Extended X-ray emission from the central 300×200 pc of the Galaxy reveals that
the CMZ is embedded in a corona of hot, low-density gas that probably occupies
most of the volume of the central zone, and is roughly coextensive with the CMZ
(Kawai et al 1988; Koyama et al 1989, 1996; Yamauchi et al 1990; Sunyaev
et al 1993; Markevitch et al 1993). The hot gas is evidenced by both the X-
ray continuum and the 6.7 keV line emission from helium-like iron (24 times
ionized). A recent mosaic of the continuum emission made with the Chandra X-
Ray Observatory is shown in figure 4.6. It illustrates the mix of diffuse emission
and large numbers of point sources, most of which are X-ray binary stars. Until
recently, it was thought that the gas temperature in the X-ray emitting gas was
∼108 K because of the strength of the 6.7 keV line, but that interpretation has
recently been called into question by Wang et al (2002). With the Chandra X-
Ray Observatory, they have mapped a 2◦ by 0.8◦ region about the Galactic Center
with 1′′ spatial resolution, and have found that much of the 6.7 keV line emission
emanates from discrete stellar sources (presumably close binary systems), rather
than from the diffuse structures. Wang et al argue that the temperature of the hot
gas is therefore more like 107 K, a much less demanding constraint in terms of
the requisite heating source. One of the most important consequences of lowering
the temperature to 107 K is that the gas is bound to the Galaxy. At 108 K, the gas
would be unbound, implying a thermal, galactic wind. In this case, the galactic
wind could well be a major sink for the gas migrating inwards through the CMZ.
The XMM satellite observatory should soon provide images of the full extent of
the coronal gas bubble.

4.5 The Galactic Center magnetosphere

The magnetic field in the inner few hundreds of parsecs of the Galaxy has been
somewhat of a surprise, inasmuch as it has been found to be unexpectedly strong
(milligauss versus a few microgauss in the Galactic disk), apparently highly
ordered, and characterized by a completely different geometry (dipolar) from the
field in the Galactic disk (toroidal).
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Figure 4.6. False-color mosaic image of X-ray emission from the Galactic Center region,
from Wang et al (2002). This image covers a band of about 2◦ × 0.8◦ in Galactic
coordinates (300 × 120 pc), and is centered at l = −0.1◦, b = 0◦, roughly the location of
the Sgr A complex. The three energy bands are 1–3 keV (shown in red), 3–5 keV (green),
and 5–8 keV (blue). The image was compiled from 30 separate pointings acquired with the
Advanced CCD Imaging Spectrometer (ACIS-I). The intensity is plotted logarithmically
to emphasize low-surface-brightness features.

There are several ways of probing the magnetic field at the Galactic Center,
and all have been used to study the Galactic Center field (Morris 1994, 1998;
Morris and Serabyn 1996 and references therein):

(1) the Zeeman effect in the spectral lines of OH and HI,
(2) Faraday rotation of polarized background radio emission,
(3) the orientation of the polarization vectors of the thermal emission from

magnetically aligned dust grains,
(4) the filamentary morphology of synchrotron-emitting structures and
(5) the intrinsic orientation of the polarization vectors in the synchrotron-

emitting structures.

An example of an application of the third method is shown in figure 4.7,
taken from Aitken et al (1998).

Filamentary radio structures which delineate the magnetic field (method 4)
are illustrated in figure 4.8. These structures are representative of about a dozen
filamentary radio systems, the most prominent of which is the bundle of filaments
constituting the Galactic Center Radio Arc (situated at the top of figure 4.8, and
not well represented in this radiograph because of its distance from the center of
the field; see Yusef-Zadeh et al 1984). These non-thermal radio filaments (NTFs)
generally share several characteristics (Morris 1996):

(1) Their radio emission is highly polarized synchrotron radiation, and when
the polarization vectors are corrected for Faraday rotation by the intervening
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Figure 4.7. Vectors orthogonal to the 12.5 µm polarization vectors measured toward Sgr A
West by Aitken et al (1998), superimposed on contours of the surface brightness at that
wavelength. These vectors are probes of the magnetic field direction to the extent that the
emitting dust grains have been collectively aligned by the magnetic field. Note how the
magnetic field follows the Northern Arm, the north–south structure which is a stream of
dust and gas falling towards, and orbiting partially around, the black hole (see figure 4.10).

medium, they are found to be perpendicular to the filaments, indicating that,
not surprisingly, the magnetic field is aligned with the filaments.

(2) They are typically quite long: 20–50 pc, and narrow: less than 0.3 pc.
(3) With one exception, the NTFs all have a gentle, smooth curvature with no
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Figure 4.8. The radio ‘threads’ observed toward the Galactic Center with the Very Large
Array (VLA) at a wavelength of 20 cm (Lang et al 1999). Other filamentary systems are
evident as well. Note the strikingly large scale of the radio filaments; the 5 arcmin between
tick marks on the vertical axes corresponds to 12.5 pc.

gross deformations. The exception is the ‘Snake’, or G359.1-00.2 (Gray et
al 1995), which shows a few kinks along its length.

(4) All of the NTFs within a projected distance of 150 pc of the Galactic Center
are approximately perpendicular to the galactic plane.

The generally smooth curvature of the NTFs has been used as evidence for
a high rigidity of the magnetic field (Yusef-Zadeh and Morris 1987a). That is,
the magnetic field strength must be of the order of a milligauss in order to not
show distortions resulting from inevitable (and observed) interaction with the
tumultuous interstellar medium at the Galactic Center. A milligauss magnetic
field has a tremendous pressure compared to other sources of interstellar pressure
in the Galactic Center region, so it is unlikely that the NTFs are isolated, because
in that case, their internal pressure would cause them to expand explosively.
Self-confinement of isolated, force-free magnetic field configurations has been
considered, but this hypothesis does not solve the problem that the filamentary
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structures will expand and dissipate without some confining medium. The
confinement of the field is assured, however, if the magnetic field in the central
150 pc of the Galaxy is ubiquitous and approximately uniform. Then the NTFs
represent locations where the more-or-less uniform magnetic field is ‘illuminated’
by the local injection of relativistic electrons. The filamentary morphology can be
understood in terms of the fact that the large-scale field constrains these electrons
to diffuse only parallel to the magnetic field lines. The overall picture indicated
by the orientation of all the filaments is that of a dipole field with perhaps some
divergence above the Galactic plane. The confinement and stability of a strong
central field have been discussed recently by Chandran (2001).

The NTFs define the magnetic field in the intercloud medium. Within
molecular clouds, the magnetic field orientation has been measured using the
far-infrared polarization of the thermal emission from dust grains and found to
be quite different: largely parallel to the Galactic plane (Hildebrand et al 1990,
1993; Morris et al 1992; Morris and Serabyn 1996; Novak et al 2000). While the
magnetic field strength is not directly determined by this method, the striking
uniformity of the orientation of the polarization vectors measured at adjacent
positions suggests that it is at least as strong as the field in the intercloud medium
(following the arguments of Chandrasekhar and Fermi 1953). The orientation of
the field within clouds can be attributed to the shear to which molecular clouds
are subjected there (Aitken et al 1998; Morris et al 1992).

The rough orthogonality of the cloud and intercloud fields raises the
possibility that field line reconnection could be a mechanism for particle
acceleration within the filaments. This mechanism was explored by Serabyn
and Morris (1994), who argued that the reconnection process is most effective
where the cloud surface is ionized, presumably by a fortuitously nearby star, and
where the cloud is moving with respect to the ambient magnetic field. The HII
region at the cloud surface provides two things: turbulence, which mixes the cloud
and intercloud fields and fosters their reconnection; and the electrons which are
thereby accelerated. So far, every NTF which has been sufficiently well studied
can be connected with a surficially ionized molecular cloud somewhere along its
length (e.g. Uchida et al 1996; Kramer et al 1998; Staguhn et al 1998). However,
further evidence is needed to establish this hypothesis, such as a demonstration
that the spectral indices of the NTFs always steepen away from the presumed
acceleration site as the emitting electrons lose energy.

How is the strong, vertical magnetic field at the Galactic Center produced?
No dynamo models have yet successfully produced a strong dipole field at the
Galactic Center. The one extant model that can account for it posits that the
central field simply results from the slow inward migration, over a Hubble time,
of partially ionized gas, to which the vertical component of the protogalactic
magnetic field is effectively frozen (Sofue and Fujimoto 1987; Morris 1994;
Chandran et al 2000). The field component parallel to the Galactic plane follows
a different history; it can be lost by drifting vertically out of the thin Galactic
disk by ambipolar diffusion, but along the way it can be amplified by differential
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rotation and other dynamo processes. In any case, the vertical component is the
only one which can be concentrated at the center.

All the evidence we have from measurements made at large spatial scales
indicates that matter that accretes onto the black hole from the interstellar
medium is relatively strongly magnetized. Even if the accreting matter comes
predominantly from the winds of the massive stars near the central black hole,
those stars, and thus their winds, are presumably quite strongly magnetized, given
that they recently formed out of such highly magnetized material as is present in
the CMZ.

4.6 The circumnuclear disk and Sagittarius A West

Well within the central molecular zone lies a disk of molecular gas which
surrounds and orbits the central black hole. This distinctive structure is important
because of its potential for providing matter to the black hole. At present, this
circumnuclear disk (CND) has an inner cavity with a radius of about 1 pc, and the
disk can be followed out to as much as 7 pc in some directions with molecular line
observations (Morris and Serabyn 1996). The CND is inclined by about 60◦ to the
line of sight (see figure 4.9), so it is in fact tilted with respect to the Galactic plane
(Güsten et al 1987; Marshall et al 1995). This is a very fortunate circumstance,
because, if the CND were aligned with the Galactic plane, or if it were edge-on to
our line of sight in some other plane, then the extinction through this disk would
have made the study of stars and gas in the central parsec extremely difficult.

The CND was discovered in the far-infrared, at a wavelength of 100 µm
(Becklin et al 1982), where, because of limb-brightening, it appears as two lobes
of emission straddling Sgr A*—the compact radio core (see chapter 11). The
prominent far-infrared emission from the CND emanates from the warm dust
heated by the extremely luminous, hot stars in the central stellar cluster (Davidson
et al 1992; Dent et al 1993; Telesco et al 1996). A layer of gas at the abrupt inner
edge of the disk is ionized (at least where the UV starlight is able to reach that
inner edge; the gaseous features comprising the H II region Sgr A West, described
later, apparently block some of the ionizing radiation from reaching the CND).
Immediately exterior to the ionized ring is a ring of shocked molecular hydrogen,
as is shown in figure 4.9 (Yusef-Zadeh et al 2001). The CND is a clumpy structure
on all scales which have been used to observe it. This implies, in principle, that
UV radiation from the enclosed stars can penetrate much further into the disk than
would be possible if the medium were uniform. The penetration of UV radiation
also leads to a thick photodissociation region in the interior portions of the CND,
where atomic and molecular gas coexist (C II, Lugten et al 1986; H2, Gatley et al
1986, Yusef-Zadeh et al 2001; O I, Jackson et al 1993; C I, Serabyn et al 1994;
HCN, Marshall et al 1995; other molecules, White 1996 and Wright et al 2001).
The detailed microstructure of the CND has been modeled by Vollmer and Duschl
(2000, 2001a, b).
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Figure 4.9. The circumnuclear disk, as seen in NIR emission from shocked molecular
hydrogen by the NICMOS camera on the Hubble Space Telescope (from Yusef-Zadeh et
al 2001). This mosaiced image shows the gray scale and contours of velocity-integrated
H2 S(1) 1–0 line emission. The star at the center of the configuration shows the location
of the radio counterpart to the Galactic black hole, Sgr A*. The square in the ring is due
to artifacts of mosaicing. The plus signs mark the positions of 1720 MHz OH masers,
which Yusef-Zadeh et al (1996) argue are due to shocked molecular gas. The shocked
molecular hydrogen arises primarily near the inside edge of the circumnuclear disk, where
it is presumably shocked by the impact of the high-velocity winds from the hot stars
residing in the central parsec (see text).

The CND has a relatively flat rotation curve, starting at about 110 km s−1

at its inner edge (Roberts and Goss 1993). The determination of the rotation
curve requires knowledge of the possibly radius-dependent orientation of the disk
plane (Marshall et al 1995), and this is not yet well determined. This orientation
depends in detail on the recent history of the CND, for example, whether it is a
result of slow accretion of material migrating inwards from the CMZ or whether
it is a dispersion ring resulting from the tidal alteration of a dense cloud which
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recently passed within a few parsecs of the central black hole and got sheared into
a self-intersecting orbit (Sanders 1998). The CND is apparently approximately
circular at its inner edge, but its outer contours deviate strongly from axisymmetry
(e.g. Morris and Serabyn 1996). This can be accounted for by Sanders’ model,
but an alternative effect that merits consideration is that the blast wave of the
supernova remnant Sgr A East (see later) has recently passed by the CND, and
has deformed its originally more symmetric geometry (Maeda et al 2002).

CNDs are common to a large fraction of gas-rich spiral galaxies, notably
many with active galactic nuclei. The Hubble Space Telescope (HST) has imaged
many of them, and their physical scales tend to be larger (∼100 pc) than that
of our Galaxy’s CND, but that is likely to be a selection effect because that is
the scale corresponding to the resolving power of the HST. The importance of all
these disks is that they are likely to serve as reservoirs for fuel for the central black
holes of these galaxies. These disks are also likely to be rich in star formation, and
may be especially important in starburst galaxies. Our Galaxy’s CND is currently
the only gaseous structure which might conceivably fuel star formation in the
central parsec, although there is no evidence that the CND is forming stars at the
present time.

Sagittarius A West consists of all the ionized gas at the inner edge of the CND
and the plasma structures within the central cavity of the CND. In radio continuum
images (figure 4.10) and images made from infrared lines characteristic of H II
regions (including radio recombination lines, Brackett-γ , and [Ne II] 12.7 µm),
Sgr A West assumes the form of a three-armed, triskelian, pattern, probably
as the result of the superposition of several more-or-less independent structures
projected along our line of sight, rather than because there is a real three-armed
structure in this direction.

At least two of the features in Sgr A West—the Northern and Eastern1

Arms—appear to be infalling streams of gas. Their kinematics have been modeled
in terms of gas accelerating inwards toward the black hole on highly eccentric
orbits (Serabyn et al 1988; Herbst et al 1993; Roberts et al 1996; Morris and
Maillard 2000; Vollmer and Duschl 2000). The leading apex of these streams is
well defined and indicates that, while close to the central black hole, the orbital
motion has not yet carried the apex past periapse. One might anticipate that, on
a timescale as short as 104 years, at least one of these streams will self-intersect
and create a dispersion ring well within the inner cavity of the CND. If the two
streams collide, the dynamics will be more complex, and the angular momentum
loss will lead to an even more compact disk around the black hole. In either
case, the accretion rate onto the black hole is likely to be considerably enhanced
over its present, relatively small rate. The origin of these streams is still unclear;
possibilities include:

(1) a magnetohydrodynamic instability occurring at the inside edge of the CND,

1 Note that in astronomical maps and images East is on the left.
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Figure 4.10. Radio continuum image of the central portion of Sgr A West, made at
1.3 cm wavelength with the VLA by Zhao and Goss (1998). The spatial resolution of
this image is 0.1′′. Sgr A* is the prominent point source at the center of the image, while
the Northern Arm falls from the northeast (top left) around Sgr A* to the south, where it
joins the ‘mini-cavity’, centered ∼3′′ to the southwest of Sgr A*. The Eastern Arm comes
in from the southeast, and the extended emission feature cutting through the mini-cavity
from southeast to northwest is the ‘bar’. See also color section.

(2) collision of a small cloud with the CND, leading to local angular momentum
loss, with subsequent infall (Jackson et al 1993), and

(3) a low-angular-momentum gas cloud from well beyond the CND, now
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approaching its pericenter distance. The presence of presumably infalling
molecular gas streams on somewhat larger scales (e.g. McGary et al 2001)
would favor the last two possibilities.

4.7 Star formation

Star formation in the CMZ seems to be rather different from that seen elsewhere
in the Galaxy. For one thing, one finds in this region the most extreme young
star clusters in the Galaxy. There are three remarkable, massive, short-lived
star clusters known in this region: the Arches, the Quintuplet and the central
parsec cluster. These clusters have ages < 107 years and masses on the order
of 104 M�. All three have a large number of unusually massive, windy stars,
including a mix of Wolf–Rayet stars, Luminous Blue variables, Ofpe stars, and a
sizeable population of OB stars (Krabbe et al 1995; Najarro et al 1997; Figer et
al 1999a, b; Paumard et al 2001). Other exotic categories of very luminous stars
are also present, all falling under the rubric of helium emission-line stars, after
the presence of the 2.06 µm He emission line, an indicator of a substantial, strong
wind. The precise mix of the more evolved stars—the WR stars and LBVs—is an
indicator of the cluster age.

The Arches cluster is the youngest and most extreme (figure 4.11). It has
∼160 O stars, a total luminosity exceeding 108 L�, and a Lyman continuum
production rate of ∼4 × 1051 s−1 (Figer et al 1999b). With this radiation field,
the Arches cluster dominates the local heating and ionization of the interstellar
medium, and in fact the region surrounding the Arches cluster is the most
luminous portion of the Galactic Center region at mid-infrared wavelengths (e.g.
Shipman et al 1997), because much of the luminosity of the Arches is reradiated at
mid-infrared wavelengths. Furthermore, in the radio regime, the unusually large
HII region known as the arched filaments—linear, ionized features lying at the
surface of a molecular cloud (Lang et al 2001, 2002)—is apparently attributable
to the Arches cluster.

The youth of these clusters is assured, because, by virtue of being within
about 40 pc of the Galactic Center, they are subject to tidally induced evaporation
on timescales not much larger than their ages,∼107 years (Kim et al 1999, 2000;
Portegies-Zwart et al 2002). The disintegration of these clusters is hastened by
stellar evolution; the large rate of mass loss by the massive stars steadily reduces
the cluster mass, which in turn reduces the tidal radius.

The cluster of young stars within the central parsec is not subject to tidal
disruption because it is not a bound system. It consists of a grouping of massive
stars having independent, phase-mixed orbits in the potential well created by
the black hole and the central cluster of nuclear bulge stars. The youth of the
emission-line stars in the central cluster raises a troubling question about where
they were formed. It ordinarily takes a time far longer than the age of these
stars to bring them individually into the central parsec from larger distances by
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Figure 4.11. The Arches cluster, observed with HST/NICMOS (Figer et al 1999b). This
false-color image was made by combining images made with three near-infrared filters.
See also color section.

relaxation processes such as dynamical friction, or, equivalently, mass segregation
(Morris 1993). However, in situ star formation is problematical because of the
strong tidal forces exerted by the central black hole. At a distance of 0.25 pc,
the typical distance of the luminous, He emission-line stars from Sgr A*, the
limiting Roche density is ∼1010 H atoms cm−3. This is 104–105 times denser
than any gas presently observed near the Galactic Center, and there are serious
problems with understanding how gas could be compressed to such high densities
in such a warm, turbulent region, except possibly by the sudden release of an
enormous quantity of mechanical energy, presumably by a dramatic accretion
event onto the black hole. This scenario was considered by Morris et al (1999),
who hypothesized a limit cycle of activity within the central parsec. Assuming
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that the CND is a long-lived configuration continuously fed from the outside, and
noting that the natural evolution of the inner edge of the turbulent, magnetized
CND is to move inward as a result of viscous evolution, Morris et al suggested
that the collective winds from all the young stars in the central parsec exert a ram
pressure on the inside edge of the disk which is sufficient to impede that inward
migration (except perhaps for Rayleigh–Taylor instabilities such as these referred
to earlier in the discussion of the arms of Sgr A West). However, when the most
massive young stars in the central cluster finish their evolution, on timescales of
∼107 years, the winds will die out and the inner edge of the CND will proceed
inward. Eventually, the CND will converge upon the central black hole. If this
leads to a sudden increase in the black hole’s accretion rate, then the release of
accretion energy will be explosive, and the portions of the CND near the central
black hole will be strongly compressed. Whether that compression is sufficient
to overcome the tidal forces and allow self-gravity of the compressed layer to
form stars remains to be seen, but if it does happen like that, then the newly-
induced generation of stars and their stellar winds will establish a new dynamical
equilibrium with the inside edge of the CND, initially joining with the outpouring
of accretion energy from the black hole to evacuate the center of the CND. Thus
the cycle would start anew, with a quasi-static equilibrium again resembling the
current situation in the central parsec.

As an alternative, Gerhard (2001) recently explored the hypothesis that the
young stars in the central cluster formed as part of a massive, Arches-type cluster
originally located a few tens of parsecs away from the center. Because the
timescale for spiraling inward to the central parsec as a result of dynamical friction
is inversely proportional to the mass of the cluster, the cluster will move into the
central parsec on a sufficiently short timescale if it is massive enough. Gerhard
found that a mass as large as 106 M� is needed to account for the central young
cluster (plus its parent cloud, if that cloud accompanies it most of the way into
the center) if it starts as far out as the Arches cluster. While this mass exceeds
that of the Arches cluster by two orders of magnitude, it is not unprecedented:
super star clusters evidenced in starburst galaxies of various kinds have masses of
105–106 M� (e.g. Ho and Filippenko 1996; O’Connell et al 1994, 1995; Tacconi-
Garman et al 1996; Turner et al 2000; Maoz et al 2001). However, in the Galactic
Center, there is no evidence yet for the stellar tidal debris of young stars that
would be left behind at radii beyond a parsec as the massive cluster migrated
inward. This point is emphasized by Kim and Morris (2002), who use an N-body
code to model the dynamics of a massive cluster at the Galactic Center. They
confirm that it is possible to bring the remnant core of a cluster into the central
parsec of the Galaxy if the cluster starts out massive enough, but, in general, the
process should leave a halo of tidally stripped young stars throughout the inner
several parsecs. Currently, there is no evidence for a population of young stars
beyond the inner parsec.

The three remarkable clusters in the Galactic Center region, and the presence
of super star clusters in the nuclear regions of starburst galaxies, suggest a
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particular mode of star formation that differs from that usually found in the
Galactic disk (Morris 2001). Unless we live at a peculiar time, we must imagine
that compact massive clusters like the Arches and Quintuplet form often and
represent an important channel for populating the nuclear bulge. If other such
clusters are currently forming, their formation sites have not yet been identified,
although the star-forming core of the molecular cloud Sgr B2 is currently forming
a fairly massive star cluster which may qualify for being related to the existing
clusters (Mehringer et al 1993; Gaume et al 1995). The compactness and high
mass of the Arches cluster or any other starburst cluster raises the issue of the
timescale over which the cluster must have formed. The violence implied by
the formation of hundreds of O stars within a few tenths of a parsec, including
protostellar jets and winds and ionized gas flows at ionization fronts, is likely
to quickly shut off star formation once the process begins. Indeed, these clusters
may begin formation on the scale of a Jeans mass (∼105 years), and then fragment
hierarchically to stellar masses on a free-fall timescale. If so, then there is little
room for the persistence of straggler gas clumps; the released gravitational energy
rushing outward from the star formation cataclysm will commit any gas clump to
immediate collapse or to a quick oblivion via ionization and Kelvin–Helmholtz
instabilities. Massive starburst clusters must be quite close to coevality, so their
use as probes of the IMF (initial mass function, i.e. the distribution of stellar
masses when they form) should be little affected by a spread in stellar ages.

The core collapse of compact, massive, young clusters could provide a means
of producing intermediate-mass black holes via stellar coalescence. Over time,
dynamical friction would bring such black holes into proximity and eventual
coalescence with the central black hole, providing a means of growth for black
holes in Galactic nuclei (Ebisuzaki et al 2001).

Of course, massive star clusters are not the only way that stars form in the
Galactic Center region, and probably not even the dominant way. Many individual
compact HII regions and emission line stars have been identified and studied there
(Morris 1993; Figer et al 1994; Liszt and Spiker 1985: Lis et al 1994; Zhao et al
1993), although no generalizations about the properties of the stars have yet been
offered.

4.8 A provocative supernova remnant: Sgr A East

One of the important activities at the Galactic Center is that represented by the
apparent supernova remnant, Sagittarius A East, which is relatively close to the
central black hole. This non-thermal shell source has been well studied at radio
wavelengths for some time (Ekers et al 1983; Yusef-Zadeh and Morris 1987b;
Mezger et al 1989; Pedlar et al 1989). The radio to submillimeter studies reveal
that Sgr A East lies largely behind Sgr A West, although perhaps not entirely;
some portion of it must lie in front. In addition, the shell source surrounds Sgr A*
and Sgr A W in projection, though its center is displaced from Sgr A* by about



A provocative supernova remnant: Sgr A East 115

2.5 pc. The likelihood that Sgr A East has affected the dynamics and the geometry
of the CND has been discussed by Morris and Serabyn (1996) and by Yusef-Zadeh
et al (1999).

The idea that Sgr A East is a supernova remnant has been debated in
the literature because, while it has the appropriate morphology, its energy
requirements are unusually large (e.g. Mezger et al 1989). This led some to
consider that Sgr A East might have resulted from the release of energy from the
central black hole, in spite of the fact that it is offset from Sgr A* by several
parsecs. One hypothesis that accounts for that offset posits that Sgr A East
resulted from the tidal disruption of a star by the central black hole (Khokhlov
and Melia 1996). Such an event should occur every 104 to 105 years, consistent
with the 104-year expansion age of the Sgr A East shell. When this happens, about
half of the stellar mass is ejected as a spray into a large solid angle with an energy
well in excess of that of a supernova. The subsequent expansion of the relativistic
ejecta could thereby produce a shell source resembling Sgr A East. More recently,
Sgr A East was studied in detail by Maeda et al (2002) with the Chandra X-Ray
Observatory (CXO). The X-ray image (figure 4.12), when combined with the
radio data, suggests that Sgr A East is a mixed-morphology supernova remnant,
which means in this case that it has a spherical radio shell surrounding a centrally
concentrated X-ray continuum source. In addition, the 6.7 keV iron emission line
is concentrated toward the center of the shell, consistent with Sgr A East being a
supernova remnant. The implied high metallicity and the placement of the iron
line emission is not accounted for by hypotheses invoking stellar disruption or an
energy release from the stellar black hole.

One of the reasons that Sgr A East is said to be unusually energetic for a
supernova remnant is that it has apparently compressed the dust and gas in the
interstellar medium around it, particularly on the Eastern side of its periphery,
where a ridge of dense molecular gas abuts the edge of the shell. This ridge is
apparently the compressed portion of the 50 km s−1 molecular cloud (Serabyn et
al 1992; Uchida et al 1998). Within this ridge, and aligned with the edge of the
Sgr A East shell, is a string of compact H II regions, G-0.02-0.07, indicating that
massive stars have recently formed within the compressed gas ridge. While one
is tempted to conclude that the young stars responsible for these H II regions
were formed as a result of the cloud compression by Sgr A East, there is a
timescale problem: it takes substantially longer to form stars (∼105 years) than
the expansion time of Sgr A East.

The question of whether the shell of Sgr A East has overrun the central black
hole is an important one for understanding the environment of the black hole. The
shell of Sgr A East coincides roughly with the inner edge of the CND on the side
opposite to the center of Sgr A East (although that shell is not terribly well defined
there), so it is entirely possible that the inner parsec of the Galaxy lies within
Sgr A East, where the gas in most of the volume is extremely hot (∼107–108 K).
The unknown quantity is the line-of-sight displacement between them. If the shell
has passed over the black hole within the past several hundred years, as considered
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Figure 4.12. Smoothed X-ray image of Sgr A East (1.5–7.0 keV) with superimposed 20 cm
radio contours, from Maeda et al (2002). See also color section.

by Maeda et al (2002), then because of the strongly enhanced density of the shell,
this event may have led to an energetic accretion event. The dynamics of such an
event, or of the gas presently surrounding the black hole if the shell has already
swept through the center, are complicated by the strong ram pressure of the winds
emanating from the hot stars in the central parsec. Indeed, most investigators
assume that the black hole resides within the stellar wind bubble. However, the
current Chandra X-ray picture, which shows continuum X-ray emission extended
throughout this region, is consistent with the idea that much of the volume of the
central parsec is filled with a hot gas.
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4.9 The vicinity of Sgr A*

The immediate neighborhood of Sgr A* shows a modest amount of activity
when examined closely, but displays nothing that would herald the presence of
a supermassive black hole, except for a localized X-ray source. Sgr A* is not
coincident with the plasma structures that constitute Sgr A West, although it lies
at the end of a string of tiny, thermally emitting blobs which may have resulted
from gas dynamics in the presence of a black hole (sources ε, ζ , and η in Yusef-
Zadeh et al 1990; see also figure 4.10). Wardle and Yusef-Zadeh (1992) and Melia
et al (1996) have suggested that these blobs were formed when the collective
winds from the emission-line stars closest to Sgr A* (the stars constituting the
IRS16 complex), which are all displaced to the East of it, pass by the black
hole and are gravitationally concentrated downstream into the observed blobs.
The fact that these are a series of blobs rather than a continuous stream can
presumably be attributed in this scenario to a thermal instability in the compressed
flow. Kinematical studies of the plasma blobs, including both proper motions and
radial velocities, will ultimately enable this hypothesis to be tested. In any case,
understanding these winds is extremely important because this is likely to be the
source of matter accreted onto the black hole (chapter 10).

The region immediately around Sgr A* in projection also shows up as faint,
extended, mid-infrared emission (Stolovy et al 1996; Morris et al 2001 and in
preparation), although it cannot be associated directly with the black hole because
such emission can be found over much of the region, probably as a result of
thermal emission from warm dust in the Sgr A West complex. In fact, this
lumpy, extended mid-infrared emission will make it difficult to measure the flux
of Sgr A* at these crucial wavelengths above the synchrotron cut-off.

X-ray emission from Sgr A* has recently been measured with the CXO by
Baganoff et al (2002). The steady-state source is relatively dim, with a 0.5–
10 keV luminosity of 4 × 1033 erg s−1, and appears to be extended by about
1 arcsec, or ∼0.04 pc. This persistent flux (constant over at least a few years)
may be attributable to emission from the outermost parts of the accretion flow.
During an observation with the CXO in 2000, Sgr A* underwent a few-hour
flare, increasing its X-ray flux by a factor of about 50 relative to the quiescent
value (Baganoff et al 2001). The short timescale (∼20 min) of the substructure
of this flare dictates that it must have come from a region less than about 20
Schwarzschild radii in size. The X-rays can therefore allow us to probe the
environment of the black hole all the way in to near the event horizon. The
theoretical interpretation of the flare emission is discussed by Markoff et al
(2001; see also chapter 11). Ongoing simultaneous observations at a variety of
wavelengths should really help constrain models for the events or instabilities
which produced the X-rays.
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4.10 Perspective

The study of the region about the Galactic Center did not begin in earnest until
infrared and radio astronomy reached maturity in the 1960s and 1970s. Now,
the tableau is well filled out, but we are left with many fascinating puzzles.
The myriad ways in which the central black hole has been interacting with its
environment are only just beginning to be appreciated. The future of research in
this area will presumably reward us with clearer pictures of how matter migrates
inward from the rest of the Galaxy and forms stars, of how the strong magnetic
field can alter cloud dynamics and affect star formation and accretion into the
central parsec, and how energy release from the black hole as it accretes gas or
swallows stars can act back upon the surrounding medium. Fortunately, some
events near the black hole happen quickly or often enough that we may be able to
witness them in action (the orbital motions of the nearest stars, for example).
However, much of the most interesting work facing researchers will require
finding subtle clues to the energetic events that have taken place in the past.
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Chapter 5

Particles and fields near black holes

Valeri Frolov
University of Alberta, Edmonton, Canada

Taking now the existence of black holes for granted, the motion of particles is
studied in black hole spacetimes, first in the Schwarzschild (see chapter 1) and
then in the Kerr background (see chapter 3). Subsequently, the propagation
of fields in the same backgrounds is reviewed, taking a massless scalar field
as a ‘guinea pig’. Thereafter, more complicated spin-carrying fields are
shortly discussed. Some physical effects, such as superradiance, are briefly
mentioned. Finally, black hole electrodynamics is dealt with. A 3 + 1
decomposition of Maxwell’s equations is carried out. The so-called membrane
paradigm is introduced which treats the black hole as a black box with classical
electrodynamic behavior. In this way, a black hole can serve as a kind of a
dynamo. This mechanism may explain the activity of the nuclei of galaxies and
quasars.

5.1 Introduction

A black hole is a region with a gravitational field so strong that no information-
carrying signals can escape from this region to infinity. The gravitational field
of a black hole which is formed in a non-spherical collapse is initially time
dependent. But very soon (after the characteristic time ∼10−5 s (M/M�)) it
becomes stationary. After this an isolated black hole remains stationary or (if its
angular momentum vanishes) static. Uniqueness theorems proved in the Einstein–
Maxwell theory guarantee that the metric of a stationary black hole is uniquely
specified by its mass M , angular momentum J , and electric charge Q. The charge
usually does not play any important role in astrophysical applications. In the
presence of surrounding matter and as a result of the accreted matter falling into
the black hole, the parameters of stellar and supermassive black holes change
slowly.
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A black hole itself is an empty spacetime and by its very definition it
is invisible1. Our conclusions concerning black hole existence are based on
observations of matter falling into black holes. Matter falling from a distant region
and having initially angular momentum cannot reach the black hole horizon until
it loses the main part of its angular momentum. As a result, it forms an accretion
disc.

Studying the dynamics of gas and plasma near stellar black holes and the
motion of gas, plasma, and stars near massive black holes allows one to determine
the mass of the object located in the central region of the system. If this mass is
large enough, the only possibility to explain the dynamics of the system is to
assume that the central object is a black hole.

It should be emphasized that this conclusion is based on the assumption that
the general theory of relativity is valid. Most theoreticians believe that this is
true. But up to now, most of the tests which confirm general relativity were
performed in the weak-field limit. For this reason it is extremely important
to obtain information from the very central regions (say five gravitational radii
or smaller) of such objects. By studying details of the motion of matter and
comparing the data with the predictions of general relativity, one can demonstrate
that our understanding of the properties of spacetime in a strong gravitational field
is correct. Under these conditions arguments based on the mass estimation of the
central object practically leave no room for other options than a black hole.

To get templates which can be used for comparison with future astrophysical
observations of very central regions, one must know solutions for the motion of
plasma and particles in the vicinity of a black hole and for the electromagnetic
(or gravitational) wave propagation from the central region to a distant observer.
Both problems were studied in general relativity in great detail. In this chapter
we collect the most important results concerning particle motion and field
propagation in the black hole geometry. We focus our attention mainly on those
effects which are characteristic for black holes.

In the first two sections we discuss particle motion in the Schwarzschild and
the Kerr geometry. Field propagation in the vicinity of black holes is the subject
of the third section. Black hole electrodynamics will be considered in the last
section. Additional material connected with the subject of this chapter can be
found in the books [1–6].

5.2 Particle motion near a non-rotating black hole

5.2.1 Equations of motion

5.2.1.1 Particle motion

Consider a body which has a size much smaller than the size of a black hole such
that details connected with its internal structure are not important for the problem

1 We do not consider here primordial black holes which can emit quantum Hawking radiation.
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under consideration. Such an object is usually called a particle. Often we can
consider as particles planet-like objects in their Keplerian motion near a black
hole, small elements of accreting matter, stellar black holes and neutron stars
falling into a massive black hole, and so on. We do not consider here the more
complicated case when an object moving near a black hole has internal structure
and its internal degrees of freedom can be excited by tidal forces.

Particle motion in the background black hole geometry is described by a
solution of the geodesic equation

Duµ

dτ
:= uνuµ;ν = duµ

dτ
+ �µνλuνuλ = 0. (5.1)

Here uµ = dxµ/dτ is the four-velocity of a particle, τ is the proper time and
�µνλ are the Christoffel symbols

�µαβ = gµν�ναβ �ναβ = 1
2 (gνα,β + gνβ,α − gαβ,ν). (5.2)

5.2.1.2 Schwarzschild metric

The geometry of a static non-rotating black hole is spherically symmetric and
described by the Schwarzschild metric

ds2 = −
(

1− rS

r

)
dt2 + dr2

1− rS
r

+ r2 d�2. (5.3)

Here rS = 2M is the Schwarzschild gravitational radius, M is the black hole
mass, and d�2 = dθ2 + sin2 θ dφ2 is the line element on the unit sphere. The
gravitational radius rS is the only essential dimensional parameter. It determines
all characteristic time and length scales. The metric can be rewritten in the
following form:

ds2 = r2
S

[
−
(

1− 1

x

)
dt̃2 + dx2

1− 1
x

+ x2 d�2

]
(5.4)

where x := r/rS is a dimensionless radial coordinate and t̃ := t/rS a
dimensionless time coordinate. Since the geodesic equations are scale invariant, it
is sufficient to solve them for only one value of black hole mass (say for rS = 1).
The solutions for other masses can be obtained simply by rescaling.

Particle trajectories near a non-rotating black hole can be found by solving
the geodesic equation in the Schwarzschild geometry. A more effective way is to
use the integrals of motion connected with the spacetime symmetries.

5.2.2 Symmetries and integrals of motion

5.2.2.1 Killing vectors

A Killing vector field ξµ is a vector field which satisfies the Killing equation

ξ(µ;ν) = 0. (5.5)
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A Killing vector is a generator of a symmetry transformation on a spacetime
manifold. Killing trajectories are integral lines of the Killing vector field,

dxµ

dt
= ξµ. (5.6)

If ξµ is regular, Killing trajectories form a foliation and one can introduce (at least
locally) coordinates (t, yi ) where t is a parameter along the trajectory, and the yi

are constant on a given trajectory. It is easy to show that the metric gµν in these
coordinates does not depend on t . This demonstrates explicitly the symmetry of
the spacetime carrying a Killing vector.

5.2.2.2 Integrals of motion

For a geodesic motion the quantity ξµ uµ is constant along the particle world line
and hence it is an integral of motion. This follows from

d

dτ
(ξµuµ) = ξ(µ;ν)uµuν︸ ︷︷ ︸

=0, see equation (5.5)

+ ξµuν uµ;ν︸ ︷︷ ︸
=0: see equation (5.1)

= 0. (5.7)

5.2.2.3 Symmetries of Schwarzschild spacetime

Being static and spherically symmetric, the Schwarzschild metric has four linearly
independent Killing vector fields. One of them, in Schwarzschild coordinates,

ξ(t) := ξµ(t)
∂

∂xµ
= ∂

∂ t
(5.8)

is connected with the time symmetry. The other three are generators of the three-
parameter group of rotations preserving the geometry on a unit sphere:

ξ1 := ξµ1
∂

∂xµ
= − cosφ

∂

∂θ
+ cot θ sin φ

∂

∂φ

ξ2 := ξµ2
∂

∂xµ
= sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ
(5.9)

ξ3 := ξ(φ) := ξµ(φ)
∂

∂xµ
= ∂

∂φ
.

The latter vector generates rotation around a z-axis passing through the north
θ = 0 and south θ = π poles of the black hole.

The Killing vector ξ(t) possesses the following properties:

• ξ(t) is orthogonal to the surface t = constant. This property follows from the
invariance of the metric with respect to time reflection t → −t . (The metric
is not only stationary but also static.)

• The infinite redshift surface where ξ2
(t) = gtt = 0 coincides with a Killing

horizon, which in its turn coincides with the event horizon, see later.
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5.2.3 Equations of motion of a free test particle

5.2.3.1 Orbits are planar

Consider a particle moving in the Schwarzschild metric. Using spherical
symmetry, one can always choose coordinates so that at the initial moment τ0
one has θ0 = π/2 and (dθ/dτ )|0 = 0. Since the only non-vanishing components
of �θµν are

�θ rθ = 1

r
�θφφ = − sin θ cos θ (5.10)

the θ -component of the geodesic equation of motion takes the form

d2θ

dτ 2
+ 1

r

dr

dτ

dθ

dτ
− sin θ cos θ

(
dφ

dτ

)2

= 0. (5.11)

A solution of this equation for the given initial data is θ = π/2. Thus, the
trajectory of a particle is planar and we can assume it to lie in the equatorial
plane θ = π/2.

5.2.3.2 Effective potential

The Schwarzschild metric is invariant under time t and angular coordinate φ
translations. The corresponding conserved quantities are (θ = π/2):

Ẽ = −ξ(t)µuµ =
(

1− rS

r

) dt

dτ
(5.12)

l = ξ(φ)µuµ = r2 dφ

dτ
. (5.13)

Ẽ = E/m is the specific energy of a particle (E being the energy, and m being the
mass of the particle). The quantity l = L/m is the specific angular momentum of
a particle (L being its angular momentum). For the motion in the equatorial plane,
the total angular momentum coincides with the azimuthal angular momentum.
For a motion of the particle in the black hole exterior, both t and φ are monotonic
functions of τ .

Using these relations and the normalization condition for the four-velocity
uµ

−1 = uµuµ = gµν
dxµ

dτ

dxν

dτ
(5.14)

one gets (
dr

dτ

)2

= Ẽ2 − V (r) (5.15)

where we introduced the effective potential

V (r) =
(

1− rS

r

)( l2

r2
+ 1

)
. (5.16)
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Figure 5.1. Effective potential U(x) as a function of x = r/rS and for a specific angular
momentum L̃ of a particle.

5.2.3.3 Properties of the effective potential

Different types of particle trajectory can be classified by studying the turning
points of its radial motion where

V (r) = Ẽ2. (5.17)

The only scale parameter in the problem is the gravitational radius of the
black hole. Using again the dimensionless coordinate x and L̃ = l/rS we can
rewrite V (x) according to

V (r) = U(x) =
(

1− 1

x

)(
L̃2

x2
+ 1

)
. (5.18)

The effective potential U(x) is shown in figure 5.1. For fixed |L̃| ≥ √3, U as a
function of x has a maximum at x+ and a minumum at x−, where

x± = L̃

(
L̃ ±

√
L̃2 − 3

)
. (5.19)

For L̃ = √3, x− = x+ = 3. A heavy full line in figure 5.1 shows the position of
the extrema.

5.2.4 Types of trajectory

5.2.4.1 Bound and unbound trajectories

The specific energy of a moving particle remains constant; in figure 5.2 this
motion is shown by a horizontal line. The intersection of the horizontal line
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Figure 5.2. An example of the effective black hole potential for L̃ >
√

3.

with the effective potential determines the turning points. The horizontal a with
Ẽ1 < 1 corresponds to the motion in a bound region in space between r1 and
r2; this is an analogue of elliptic motion in Newtonian theory. The corresponding
trajectory is not a conic section, and, in general, is not closed. If the orbit as a
whole lies far from the black hole, it is an ellipse which slowly rotates in the plane
of motion.

The segment b with Ẽ2 > 1 corresponds to a particle coming from infinity
and then moving back to infinity (an analogue of hyperbolic motion). Finally,
the segment c with Ẽ3 does not intersect the potential curve but passes above
its maximum Ẽmax. It corresponds to a particle falling into the black hole
(gravitational capture). This type of motion is impossible in Newtonian theory
and is typical for the black hole. Gravitational capture becomes possible because
the effective potential has a maximum. No such maximum appears in the effective
potential of Newtonian theory.

In addition, another type of motion is possible in the neighborhood of a black
hole. This line d (with energy Ẽ4) may lie below or above unity, stretching from
rS to the intersection with the curve V (r). This segment represents the motion of
a particle which, for example, first recedes from the black hole and reaches rmax
(at the point of intersection of Ẽ4 and V (r)), and then again falls toward the black
hole and is absorbed by it. Examples of different types of trajectory are shown in
figure 5.3.
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Figure 5.3. Different types of particle trajectory.

A body can escape to infinity if Ẽ ≥ 1. From equation (see [6, p 40])

Ẽ2 = (1− rS/r)(1− v2/c2)−1 = 1 (5.20)
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Figure 5.4. Effective black hole potential for different values of L̃ : (a) L̃ = 0, (b) L̃ = √3,
(c) L̃ = 2, and (d) L̃ = √6.

we find the escape velocity as

vesc = c
√

rS/r =
√

2GM/r (5.21)

which coincides with the Newtonian expression. Note that in Newtonian theory
in the gravitational field of a pointlike mass, the escape velocity guarantees the
escape to infinity regardless of the direction of motion. The case of the black hole
is different. Even if a particle has the escape velocity, it can be trapped by the
black hole, the latter occurring if the particle moves towards the black hole. We
have already mentioned this effect, calling it gravitational capture.

5.2.4.2 Circular motion

For circular motion around a black hole dr/dτ ≡ 0. This motion is represented
in figure 5.2 by a point at the extremum of the effective potential curve. A point
at the minimum corresponds to a stable motion, and a point at the maximum to
an unstable motion. The latter motion has no analogue in Newtonian theory and
is specific to black holes. If the motion of a particle is represented by a horizontal
line Ẽ = constant very close to Ẽmax, then the particle makes many turns around
the black hole at a radius close to r corresponding to Ẽmax before the orbit moves
far away from this value of r . The shape and the position of the potential V (r)
are different for different L̃: the corresponding curves for some values of L̃ are
shown in figure 5.4.
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The maximum and minimum appear on V (r) curves when L̃ >
√

3. If
L̃ <

√
3 the V (r) curve is monotone. Hence, the motion on circular orbits

is possible only if L̃ >
√

3. The minima of the curves then lie at r > 3rS.
Stable circular orbits thus exist only for r > 3rS. At smaller distances, there are
only unstable circular orbits corresponding to the maximum of Ẽmax curves. If
L̃ →∞, the position of the maximum of the Ẽmax curve decreases to r = 1.5rS.
Even unstable inertial circular motion becomes impossible at r less than 1.5rS.

The critical circular orbit that separates stable motions from unstable ones
corresponds to r = 3rS. Particles move along it at a velocity v = c/2, the energy
of a particle being Ẽ = √

8/9 ≈ 0.943. This is the motion with the maximum
possible binding energy E ≈ 0.057 mc2.

Let us emphasize the importance of this result for black hole astrophysics.
Suppose a non-rotating black hole is surrounded by a thin accretion disk. Let
us follow the time evolution of a matter element of the disc. It is moving along
a practically circular orbit slowly losing its energy and angular momentum until
it reaches the position of the last stable circular orbit. After this, it falls almost
freely into the black hole. This means that the maximum efficiency of the energy
release by matter falling into a non-rotating black hole is 5.7%.

The velocity on (unstable) orbits, with r < 3rS, increases as r decreases
from c/2 to c on the last circular orbit with r = 1.5rS. When r = 2rS, the
particle’s energy is Ẽ = 1, that is, the circular velocity is equal to the escape
velocity. If r is still smaller, the escape velocity is smaller than the circular
velocity. There is no paradox in it, since the circular motion here is unstable
and even the tiniest perturbation (supplying momentum away from the black hole)
transfers the particle to an orbit moving it to infinity, that is, an orbit corresponding
to hyperbolic motion.

5.2.5 Equations of motion in ‘tilted’ spherical coordinates

To simplify the equations of motion of a test particle we used a special choice of
coordinates, namely we oriented the z-axis (that is the direction θ = 0, π) to be
orthogonal to the plane of the orbit. Let us now check how the equations of motion
are modified if the z-axis is tilted and not orthogonal to the orbit plane. This
exercise is instructive for the discussion of particle motion in the Kerr geometry
where there exists a preferred direction of the z-axis determined by the direction
of the angular momentum of the rotating black hole.

The expression for Ẽ remains the same, while the specific azimuthal angular
momentum, which we denote now lz , is

lz = r2 sin2 θ
dφ

dτ
. (5.22)

One also needs the expression for the conserved total angular momentum, l,

l2 = r4

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
. (5.23)
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Using these relations and the normalization condition uµuµ = −1 one can obtain
the following set of equations:

dr

dτ
= ±

[
Ẽ2 −

(
1− rS

r

)( l2

r2
+ 1

)]1/2

(5.24)

r2 dθ

dτ
= ±

(
l2 − l2

z

sin2 θ

)1/2

(5.25)

r2 dφ

dτ
= lz

sin2 θ
(5.26)

dt

dτ
= Ẽ

1− rS
r

. (5.27)

The equation for θ(τ ) shows that the angle θ changes between θ0 and π−θ0,
where sin θ0 = lz/ l. This means that the angle between the normal to the
trajectory plane and z-axis is π/2− θ0.

5.2.6 Motion of ultrarelativistic particles

5.2.6.1 Equations of motion

When the energy E is much larger than m, a particle is called ultrarelativistic. In
this limit Ẽ → ∞ and L̃ → ∞ while the ratio L̃/Ẽ remains finite and is equal
to b̃ := b/rS, where b is the impact parameter of the particle at infinity. The
equations of motion of the ultrarelativistic particle (or a light ray) take the form
(t̃ = t/rS): (

dx

dt̃

)2

=
(

1− 1

x

)2
[

1− b̃2

x2

(
1− 1

x

)]
(5.28)

dφ

dt̃
=
(

1− 1

x

)
b̃

x2
. (5.29)

The sign of b depends on the sense of motion; we assume that b is positive. The
radial turning point on the trajectory is defined by the equation

x3 − b̃2(x − 1) = 0. (5.30)

The impact parameter b as a function of the position of a radial turning point is
shown in figure 5.5.

5.2.6.2 Types of trajectory

In figure 5.5, the motion of an ultrarelativistic particle with a given b is represented
by a horizontal line b = constant. A particle approaches the black hole,
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Figure 5.5. Impact parameter b as a function of the position of extrema in x = r/rS on
the trajectory of an ultrarelativistic particle.

passes by it at the minimal distance corresponding to the point of intersection
of b = constant with the right-hand branch of the b(r) curve, and again recedes
to infinity. If the intersection occurs close to the minimum bmin = 3

√
3 × rS/2,

the particle may experience a number of turns before it flies away to infinity. The
exact minimum of the curve b(r) corresponds to the (unstable) motion on a circle
of radius r = 1.5rS at the velocity v = c. Note that the left-hand branch of b(r)
in figure 5.5 corresponds to the maximum distance between the ultrarelativistic
particle and the black hole; the particle first recedes to r < 1.5rS but then again
falls into the black hole. Obviously, for such a motion the parameter b does
not have the literal meaning of the impact parameter at infinity since the particle
never recedes to infinity. For a given coordinate r , this parameter can be found as
a function of the angle ψ between the trajectory of the particle and the direction
to the center of the black hole:

b = r | tanψ|√
(1− rS/r)(1+ tan2 ψ)

. (5.31)

If an ultrarelativistic particle approaches the black hole on the way from infinity
and the parameter b is less than the critical value bmin = 3

√
3rS/2, the particle

falls into the black hole.
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5.2.7 Gravitational capture

Let us consider now the motion of a test particle in which its trajectory terminates
in the black hole. Two types of such a motion are possible. First, the trajectory
of the particle starts at infinity and ends in the black hole. Second, the trajectory
starts and ends in the black hole. Of course, a particle cannot be ejected from the
black hole. Hence, the motion on the second-type trajectory becomes possible
either if the particle was placed on this trajectory via a non-geodesic curve or if
the particle was created close to the black hole.

The gravitational capture of a particle coming from infinity is of special
interest. Let us have a better look at this case. It is clear from the analysis of
motion given in the preceding section that a particle coming from infinity can
be captured if its specific energy Ẽ is greater, for a given L̃, than the maximum
(Ẽmax) of the curve V (r). Let us consider the gravitational capture in two limiting
cases, one for a particle whose velocity at infinity is much lower than the speed of
light (v∞/c � 1) and another for a particle which is ultrarelativistic at infinity.

In the former case, Ẽ ≈ 1. The curve V (r), which has Ẽmax = 1,
corresponds to L̃cr = 2 (line c in figure 5.2). The maximum of this curve lies at
r = 2rS. This radius is minimal for the periastra of the orbits of the particles with
v∞ = 0 which approach the black hole and again recede to infinity. If L̃ ≤ 2,
gravitational capture takes place. The angular momentum of a particle moving
with the velocity v∞ at infinity is L = mv∞b, where b is the impact parameter.
The condition L̃ ≡ L/mcrS = 2 defines the critical value bcr,nonrel = 2rS(c/v∞)
of the impact parameter for which the capture takes place. The capture cross
section for a non-relativistic particle is

σnonrel = πb2
cr = 4π(c/v∞)2r2

S . (5.32)

For an ultrarelativistic particle, bcr = 3
√

3rS/2, and the capture cross section is

σrel = 27

4
πr2

S . (5.33)

Owing to a possible gravitational capture, not every particle whose velocity
exceeds the escape limit flies away to infinity. In addition, it is necessary that the
angleψ between the direction to the black hole center and the trajectory be greater
than a certain critical value ψcr. For the velocity equal to the escape threshold this
critical angle is given by the expression

tanψcr,esc = ± 2
√
(1− rS/r)rS/r√

1− 4rS/r(1− rS/r)
. (5.34)

The plus sign is chosen for r > 2rS (ψcr < 90◦), and the minus sign for r < 2rS
(ψcr > 90◦).

For an ultrarelativistic particle, the critical angle is given by the formula

tanψcr,rel = ±
√

1− rS/r√
rS/r − 1+ 4

27 (r/rS)2
. (5.35)
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The plus sign is taken for r > 1.5rS and the minus for r < 1.5rS.

5.3 Particle motion near a rotating black hole

5.3.1 Gravitational field of a rotating black hole

5.3.1.1 Kerr metric

If a black hole is rotating, the direction of its axis of rotation singles out a
preferred direction in space. As a result, spherical symmetry characterizing the
spacetime of a non-rotating black hole is broken. The geometry of a rotating
black hole is axisymmetric. The Kerr metric describing this geometry written in
the coordinates proposed by Boyer and Lindquist [7] is

ds2 = −
(

1− 2Mr

�

)
dt2− 4Mra sin2 θ

�
dt dφ+�

�
dr2+� dθ2+ A sin2 θ

�
dφ2

(5.36)
where

� ≡ r2 + a2 cos2 θ � ≡ r2 − 2Mr + a2

A = (r2 + a2)2 − a2� sin2 θ. (5.37)

Two constants which enter the Kerr metric are the black hole mass M and the
rotation parameter a connected with angular momentum J of the black hole,
a = J/M . As for the Schwarzschild metric, one can always rewrite the Kerr
metric in the dimensionless form, by extracting the scale parameter of length
dimensions from the metric. Since the radius r+ of the event horizon depends on
a, it is convenient to use 2M or M as the scaling parameter. The latter option is
used more often. Note that in this case the normalization is different from the one
used in the Schwarzschild case by an extra factor of two. The only dimensionless
parameter which enters the dimensionless form of the Kerr metric is a/M , which
can take values in the range (−1, 1). For |a/M| > 1 there is no event horizon and
the metric describes a spacetime with a naked singularity.

5.3.1.2 Killing vectors

Being stationary (independent of time t) and axisymmetric (independent of an
angular coordinate φ) the Kerr metric has two Killing vectors:

ξ(t) := ξµ(t)
∂

∂xµ
= ∂

∂ t
ξ(φ) := ξµ(φ)

∂

∂xµ
= ∂

∂φ
. (5.38)

The Kerr geometry and its Killing vectors possess the following properties:

• Since the component gtφ of the metric does not vanish, the Killing vector
field ξ(t) is tilted with respect to the section t = constant. The tilting angle
depends on r and θ .
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• The infinite redshift surface where ξ2
(t) ≡ gtt = 0 does not coincide with a

Killing horizon. This surface where

r = M +
√

M2 − a2 cos2 θ (5.39)

is an external boundary of the ergosphere.
• The event horizon lies at� = 0, that is at r = r+, where

r+ = M +
√

M2 − a2. (5.40)

• The event horizon again coincides with the Killing horizon determined by
the equation

η2 = 0 (5.41)

where ηµ = ξµ(t) +�Hξ
µ

(φ), and

�H = a

r2+ + a2
(5.42)

is the angular velocity of the black hole.
• The infinite redshift surface lies everywhere outside the event horizon except

at the two poles θ = 0 and θ = π . Inside the ergosphere, that is, between
the infinite redshift surface and the horizon, the Killing vector field ξ(t) is
spacelike, ξ2

(t) > 0.

5.3.1.3 Killing tensor

The dragging effect connected with the rotation of the black hole affects orbits of
test particles. As a result, only orbits lying in the equatorial plane are planar. Two
integrals of motion connected with two Killing vectors together with the proper
time normalization condition are sufficient to reduce the equation of motion to a
complete set of first integrals. To proceed with non-equatorial orbits an additional
integral of motion is required. Fortunately such an integral exists for the Kerr
geometry. It is connected with a Killing tensor.

A Killing tensor is a symmetric tensor field ξµν obeying the equation

ξ(µν;λ) = 0. (5.43)

In the same manner as for the Killing vector, one can show that for a geodesic
motion the quantity

� = ξµνuµuν (5.44)

remains constant along the worldline. Indeed

d

dτ
(ξµλuµuλ) = ξ(µλ;ν)uµuν︸ ︷︷ ︸

=0:see (5.43)

uλ + ξµλuλ uνuµ;ν︸ ︷︷ ︸
=0: see (5.1)

+ξµλ uµuν uλ;ν︸ ︷︷ ︸
=0: see (5.1)

= 0.

(5.45)
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It is easy to check that a tensor product ξ(1)µ ξ
(2)
ν of two Killing vectors

ξ
(1)
µ and ξ(2)ν is a Killing tensor. In this case the corresponding conserved

quantity is a product of two integrals of motion of the Killing vectors. A non-
trivial conservation law is connected only with a Killing tensor which is linearly
independent of tensor products of the Killing vectors. For the Kerr metric, such
an independent Killing tensor has the following non-vanishing components in the
Boyer–Lindquist coordinates [8–12]

ξ00 = a2

[
1− 2Mr cos2 θ

�

]
ξ11 = −a2 cos2 θ�

�

ξ22 = r2� ξ03 = −a sin2 θ

�
[�a2 cos2 θ + r2(r2 + a2)] (5.46)

ξ33 = sin2 θ

�
[r2(r2 + a2)2 + 1

4�a4 sin2 2θ ].

5.3.2 Equations of motion of a free test particle

5.3.2.1 Integrals of motion

Conserved quantities connected with Killing vectors ξ(t) and ξ(φ) are:

Ẽ = −ξ(t)µuµ =
(

1− 2Mr

�

)
dt

dτ
+ 2Mra sin2 θ

�

dφ

dτ
(5.47)

lz = ξ(φ)µuµ = −2Mra sin2 θ

�

dt

dτ
+ A sin2 θ

�

dφ

dτ
. (5.48)

As before, Ẽ = E/m is the specific energy and lz = Lz/m is the specific angular
momentum of a particle. A conserved quantity connected with the Killing tensor
is

� =
(

Ẽa sin θ − lz

sin θ

)2

+�2
(

dθ

dτ

)2

+ a2 cos2 θ. (5.49)

Quite often, one uses, instead of �, another integral of motion, �, that is related
to it by

� ≡ �− (Ẽa− lz)
2 = l2

z cot2 θ − Ẽ2a2 cos2 θ +�2
(

dθ

dτ

)2

+a2 cos2 θ. (5.50)

To summarize, the equations of motion of a particle in the Kerr–Newman
spacetime allow four integrals of motion, E , Lz , � (or �), and a trivial one,
uµuµ = −1.
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5.3.2.2 First integrals of the equations of motion

One can express the four components uµ of the velocity as explicit functions of
these integrals of motion and coordinates r and θ . As a result one gets the system

�
dr

dτ
= ±�1/2 (5.51)

�
dθ

dτ
= ±�1/2 (5.52)

�
dφ

dτ
= lz

sin2 θ
− a Ẽ + a

�
[Ẽ(r2 + a2)− lz a] (5.53)

�
dt

dτ
= a(lz − a Ẽ sin2 θ)+ r2 + a2

�
[Ẽ(r2 + a2)− lz a] (5.54)

where

� = [Ẽ(r2 + a2)− lz a]2 −�[r2 + (lz − a Ẽ)2 +�] (5.55)

� = �− cos2 θ

[
a2(1− Ẽ2)+ l2

z

sin2 θ

]
. (5.56)

The signs ± which enter these relations are independent from one another.
In the limit a → 0, that is for a non-rotating black hole, these equations

coincide with the corresponding equations of motion in the tilted spherical
coordinates. In this limit � = l2 − l2

z .

5.3.2.3 Bound and unbound motion

The geodesic world line of a particle in the Kerr metric is completely determined
by the first integrals of motion Ẽ , lz , and �. Consider � which enters the radial
equation of motion as a function of r for fixed values of the other parameters:

� = (Ẽ2 − 1)r4 + 2Mr3 + [(Ẽ2 − 1)a2 − l2
z −�]r2

+ 2M[�+ (Ẽa − lz)
2]r − a2�. (5.57)

The leading term for large r on the right-hand side is positive if Ẽ2 > 1. Only in
this case can the motion be infinite. For E2 < 1 the motion is always finite, i.e.
the particle cannot reach infinity.

5.3.2.4 Effective potential

For a rotating black hole the variety of trajectories becomes wider and their
classification is much more involved [13, 14]. We discuss only some important
classes of trajectories.

For studying the qualitative characteristics of the motion of test particles in
the Kerr metric it is convenient to use the effective potential. Let us rewrite� as

� = α Ẽ2 − 2β Ẽ + γ (5.58)
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where

α = r4 + a2(r2 + 2Mr) β = 2aMlzr (5.59)

γ = l2
z a2 − (r2 + l2

z +�)�. (5.60)

The radial turning points � = 0, see (5.51), are determined by the condition
Ẽ = V±(r), where

V± := β ±
√
β2 − αγ
α

. (5.61)

The quantities V± are known as the effective potentials. They are functions of
r , the integrals of motion lz and �, and the parameters M and a. Actually, these
quantities enter V only in the form of the dimensionless combinations r/M , lz/M ,
�/M2, and a/M .

The motion of a particle with specific energy Ẽ is possible only in the regions
where either Ẽ ≥ V+ or Ẽ ≤ V−. The function for � remains invariant under
transformations Ẽ → −Ẽ , lz → −lz relating the regions mentioned earlier. In
the Schwarzschild geometry, the second region Ẽ ≤ V− is excluded, since, in the
exterior of the black hole, Ẽ ≥ 0 and V− < 0. The limiting values of the effective
potentials V± at infinity and at the horizon respectively are:

V±(r = ∞) = ±1 V±(r+) = alz/2Mr+ = �Hlz (5.62)

where �H is the angular velocity of the black hole. The effective potentials for
non-rotating and rapidly rotating black holes are shown in figure 5.6.

5.3.2.5 Motion in the θ -direction

Let us consider the properties of the function� which determines the motion of a
particle in the θ -direction. Since � ≥ 0 the finite motion with Ẽ2 < 1 is possible
only if � ≥ 0. The orbit is characterized by the value � = 0 if and only if it is
restricted to the equatorial plane. Non-equatorial finite orbits with θ = constant
do not exist in the Kerr metric.

For � = 0, � is positive only if Ẽ2 > 1. The turning points ±θ0 in the
θ -direction are defined by the equation

sin2 θ0 = l2
z

a2(Ẽ2 − 1)
. (5.63)

This equation implies that |lz| ≤ a
√

Ẽ2 − 1. Since in this case all the
coefficients which enter� are non-negative, there are no turning points in r . The
corresponding motion is infinite. It starts either at infinity and ends at the black
hole horizon, or it starts near the black hole horizon and ends at infinity.

For � ≥ 0, there exist both finite as well as infinite trajectories. They
intersect the equatorial plane or (for � = 0 and Ẽ2 < 1) are entirely situated in
it. The particles with � < 0 never cross the equatorial plane and move between
two surfaces θ = θ+ and θ = θ−.
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Figure 5.6. Effective potentials V± for the Kerr metric. The upper plots are for a = 0
(Q = 0 left and Q = 40 right); the lower ones are for a = 0.99 (Q = 0 left and Q = 40
right).

5.3.3 Motion in the equatorial plane

For particles moving in the equatorial plane of a rotating black hole, the
expressions for dr/dτ and dφ/dτ can be written in the form

r3
(

dr

dτ

)2

= Ẽ2(r3 + a2r + 2Ma2)− 4aM Ẽlz − (r − 2M)l2
z − r�

(5.64)

dφ

dτ
= (r − 2M)lz + 2aM Ẽ

r�
. (5.65)

They are analogous to the corresponding equations for a Schwarzschild black
hole. An analysis of the peculiarities of motion is performed in the same way as
before by using the effective potential.

5.3.3.1 Circular orbits

The most important class of orbits is circular orbits. For given Ẽ and lz , the radius
r0 of a circular orbit can be found by solving simultaneously the equations

�(r0) = 0
d�

dr

∣∣∣∣
r0

= 0. (5.66)
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Figure 5.7. Trajectories of particles in the equatorial plane. In each case two trajectories
are shown. Both trajectories have the same initial conditions. The particle is moving in the
Kerr metric with a = |a| and a = −|a|, respectively.

One can also use these equations to obtain the expressions for the specific energy
Ẽcirc and specific angular momentum lcirc as functions of the radius r of the
circular motion [15],

Ẽcirc = r2 − 2Mr ± a
√

Mr

r(r2 − 3Mr ± 2a
√

Mr )1/2
(5.67)

lcirc = ±
√

Mr (r2 ∓ 2a
√

Mr + a2)

r(r2 − 3Mr ± 2a
√

Mr)1/2
. (5.68)

The upper signs in these and the subsequent formulas correspond to direct orbits
(i.e. co-rotating with lz > 0), and the lower signs correspond to retrograde orbits
(counter-rotating with lz < 0). We always assume that a ≥ 0.

The coordinate angular velocity of a particle on the circular orbit is

ωcirc = dφ

dt
= ±√Mr

r2 ± a
√

Mr
. (5.69)
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Figure 5.8. rphoton, rbind, and rbound as functions of the rotation parameter a/M . The
quantities corresponding to the direct and retrograde motions are shown by dashed and
dotted lines, respectively.

5.3.3.2 Last stable circular orbits

Circular orbits can exist only for those values of r for which the denominator in
the expressions for Ẽcirc and lcirc is real, i.e.

r2 − 3Mr ± 2a
√

Mr ≥ 0. (5.70)

The radius of the circular orbit closest to the black hole (the motion along it occurs
at the speed of light) is

rphoton = 2M

{
1+ cos

[
2

3
arccos

(
∓ a

M

)]}
. (5.71)

This orbit is unstable. For a = 0, we have rphoton = 3M , while for a = M , we
find rphoton = M (direct motion) or rphoton = 4M (retrograde motion).

The circular orbits with r > rphoton and Ẽ ≥ 1 are unstable. A small
perturbation directed outwards forces the particle to leave its orbit and escape
to infinity on an asymptotically hyperbolic trajectory.

The radius of the unstable circular orbit, on which Ẽcirc = 1, is given by

rbind = 2M ∓ a + 2M1/2(M ∓ a)1/2. (5.72)

These values of the radius are the minima of periastra of all parabolic orbits. A
particle in the equatorial plane, coming from infinity where its velocity is v∞ � c,
is captured if it passes the black hole closer than rbind.

Finally the radius of the boundary circle separating stable circular orbits from
unstable ones is given by the expression

rbound = M{3 + Z2 ∓ [(3− Z1)(3+ Z1 + 2Z2)]1/2} (5.73)
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Table 5.1. The radii rphoton, rbind, and rbound (in units of rS = 2M) for a non-rotating
(a = 0) and an extremely rotating (a = M) black hole.

a = M

Orbit a = 0 L > 0 L < 0

rphoton 1.5 0.5 2.0
rbind 2.0 0.5 2.92
rbound 3.0 0.5 4.5

Table 5.2. Specific energy Ẽ , specific binding energy 1 − Ẽ , and specific angular
momentum |lz |/M of a test particle at the last stable circular orbit.

a = M

Orbit a = 0 L > 0 L < 0

Ẽ
√

8/9
√

1/3
√

25/27
1− Ẽ 0.0572 0.4236 0.0377
|lz |/M 2

√
3 2/

√
3 22/3

√
3

where

Z1 = 1+ (1− a2/M2)1/3[(1+ a/M)1/3 + (1− a/M)1/3] (5.74)

Z2 = (3a2/M2 + Z2
1)

1/2. (5.75)

The quantities rphoton, rbind, and rbound as the functions of the rotation parameter
a/M are shown in figure 5.8.

Table 5.1 lists rphoton, rbind, and rbound for the black hole rotating at the
limiting angular velocity, a = M , and gives a comparison with the case of a = 0
(in units of rS = 2M). As a → M , the invariant distance from a point r to the
horizon r+, ∫ r

r+

r ′ dr ′

�1/2(r ′)
(5.76)

diverges. This does not mean that all orbits coincide in this limit and lie at the
horizon, although at L > 0 the radii r of all three orbits tend to the same limit
r+ [15].

Finally, we will give the values of specific energy Ẽ , specific binding energy
1 − Ẽ , and specific angular momentum |lz|/M of a test particle at the last stable
circular orbit, rbound (see table 5.2).



Particle motion near a rotating black hole 147

The binding energy has a maximum for an extremely rotating black hole
with a = M . It is equal to

Ebinding = (1− 1/
√

3)mc2 ≈ 0.4226 mc2. (5.77)

Thus, the maximum efficiency of the energy release by matter falling into a
rotating black hole is 42%. This is much higher than in a non-rotating case.

5.3.3.3 Motion with negative Ẽ

It is easy to show that orbits with negative Ẽ are possible within the ergosphere for
any θ �= 0, π . This follows from the fact that the Killing vector ξ(t) is spacelike
inside the ergosphere. The specific energy Ẽ is defined as Ẽ = −uµξ

µ

(t). Local
analysis shows that for a fixed spacelike vector ξ(t) it is always possible to find a
timelike or null vector uµ representing the four-velocity of a particle or a photon
so that Ẽ is negative. Orbits with Ẽ < 0 make it possible to devise processes that
extract the ‘rotational energy’ of the black hole. Such processes were discovered
by Penrose [16].

5.3.4 Motion off the equatorial plane

We consider only a special type of motion off the equatorial plane when particles
are moving quasiradially along the trajectories on which the value of the polar
angle θ remains constant, θ = θ0. For this motion

�(θ0) = 0
d�

dθ

∣∣∣∣
θ0

= 0. (5.78)

If we exclude trivial solutions θ0 = 0, θ0 = π , and θ0 = π/2, the relations
between the integrals of motion can be written in the form

l2
z = a2(Ẽ2 − 1) sin4 θ0 (5.79)

� = −a2(Ẽ2 − 1) cos4 θ0. (5.80)

Hence, motion with constant θ = θ0 is possible only when Ẽ > 1 (infinite
motion).

Non-relativistic particles moving at parabolic velocity (v∞ = 0) and with
zero angular momentum (lz = 0) represent a special limiting case. Such particles
fall at constant θ and are dragged into the rotation around the black hole.

Another important limiting case is the falling of ultrarelativistic particles
(photons) which move at infinity at θ = constant. In this limit, Ẽ → ∞ and
lz →∞ while their ratio b = lz/Ẽ remains finite and equal to b = a sin2 θ . The
null vector nµ tangent to a null geodesic representing the motion of the in-coming
photon is

nµ =
(
(r2 + a2)

�
,−1, 0,

a

�

)
. (5.81)
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If one substitutes 1 instead of −1 into the right-hand side of this expression one
obtains a congruence of outgoing photons. These two null congruences are known
as the principal null congruences of the Kerr metric. They are geodesic and shear
free. They satisfy the following relations:

Cαβγ [δnλ]nβnγ = 0 (5.82)

where Cαβγ δ is the Weyl tensor. Since the Kerr metric is a vacuum solution, the
Weyl tensor is equal to the Riemann tensor. The principal null vectors in the Kerr
geometry also obey the relation

ξ(t)µ;νnν = ±1

2

∂F

∂r
nµ (5.83)

where F = −gtt = 1− 2Mr/�.

5.3.5 Gravitational capture

5.3.5.1 Gravitational capture of non-relativistic particles

We now consider the gravitational capture of particles by a rotating black hole
(see also a review article [17]). The impact parameter b⊥ of capturing a non-
relativistic particle moving in the equatorial plane is given by the expression:

b⊥ = ±2M
1

v∞

(
1+

√
1∓ a

M

)
. (5.84)

The capture cross section for particles falling perpendicularly to the rotation axis
of the black hole with a = M is [18]

σ⊥ = 14.2π(1/v∞)2M2. (5.85)

The impact parameter of particles falling parallel to the rotation axis, b‖, can be
found in the following manner. Let us denote b̃‖ = b‖/M , ã = a/M . Then b̃‖ is
found as the solution of the equation

(1− ã2)q4
0 + 4(5ã2 − 4)q3

0 − 8ã2(6+ ã2)q2
0 − 48ã4q0 − 16ã6 = 0 (5.86)

where q0 = v2∞(b̃2‖ − ã2). If ã = 1, then

b̃‖ = 3.85

(
1

v∞

)
M σ‖ = 14.8π

(
1

v∞

)2

M2. (5.87)

5.3.5.2 Gravitational capture of ultrarelativistic particles

Consider now ultrarelativistic particles. The impact parameters of capture, b⊥,
for the motion in the equatorial plane are given by the following formulas.
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If the angular momentum is positive, then

b+⊥
M
= 8 cos3

[
1

3
(π − arccos ã)

]
+ ã. (5.88)

If the angular momentum is negative, then

b−⊥
M
= −8 cos3

(
1

3
arccos |ã|

)
+ ã. (5.89)

In this case the cross section for ã = 1 is

σ⊥ = 24.3πM2. (5.90)

For photons propagating parallel to the rotation axis of the black hole with ã = 1,
we have

b‖
M
= 2(1+√2) σ‖ = 23.3πM2. (5.91)

A rotating black hole captures incident particles with a lower efficiency than a
non-rotating black hole of the same mass does.

5.4 Propagation of fields in the black hole spacetime

There are many problems of black hole physics which require detailed knowledge
of propagation of physical fields in the black hole geometry. In particular, they
include:

• the radiation emitted by objects falling into a black hole,
• the gravitational radiation during a slightly non-spherical gravitational

collapse,
• scattering and absorption of waves by a black hole,
• gravitational radiation from coalescing compact binary systems,
• analysis of stability of black hole solutions and
• quantum radiation of black holes.

For these and other relevant problems it is often sufficient to consider
physical fields (including gravitational perturbations) in a linear approximation
and to neglect their back reaction on the background black hole geometry.

5.4.1 Scalar massless field in the Schwarzschild metric

5.4.1.1 Field equation

The electromagnetic field and gravitational perturbations are of most interest in
astrophysical applications. Both fields are massless and carry spin. For simplicity,
we consider first a massless scalar field with zero spin and discuss later effects
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caused by spin. Moreover, we consider the simpler case of a non-rotating black
hole.

A massless scalar field evolves according to the Klein–Gordon equation

� := (−g)−1/2∂µ[(−g)1/2gµν∂ν ] = −4π J (5.92)

where g is the determinant of the metric gµν and J a scalar charge density.

5.4.1.2 Spherical reduction

In a general spherically symmetric spacetime with metric

ds2 = γAB dx A dx B + r2 d�2 A, B = 0, 1 (5.93)

one can decompose a general solution into the spherical modes

 !m = u!(t, r)

r
Y!m(θ, φ) (5.94)

where Y!m(θ, φ) are the spherical harmonics. The functions u!m obey the two-
dimensional wave equation

(2� − V!)u!m = −4π j!m (5.95)

where 2� = (−γ )−1/2∂A[(−γ )1/2γ AB∂B ] is the two-dimensional ‘box’-operator
for the metric γAB , and

V! = !(!+ 1)

r2 +
2�r

r
. (5.96)

For the Schwarzschild metric, we find

2�r

r
= rS

r3 . (5.97)

5.4.1.3 Radial equation and effective potential

We focus now on solutions of the homogeneous equations with j!m = 0. Since
the Schwarzschild geometry is static we can decompose them into monochromatic
waves

uω! = û!(r, ω)e
−iωt (5.98)

where the radial function û!(r, ω) is a solution of the equation[
∂2

∂r2∗
+ ω2 − V!(r)

]
û!(r, ω) = 0. (5.99)

Here r∗ is the so-called tortoise coordinate

r∗ = r + rS log

(
r

rS
− 1

)
+ constant (5.100)
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Figure 5.9. The effective potential V! for ! = 0, 1, 2 as a function of r .

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4 6

(2M)  V

r /(2M)
*

l = 0

l = 1

l = 2

2
l

Figure 5.10. The same potentials as functions of r∗. The constant in the definition of r∗ is
fixed so that r∗ = 0 for r = 3M .

and V!(r) is the effective potential

V!(r) =
(

1− rS

r

) [!(!+ 1)

r2
+ rS

r3

]
. (5.101)

The effective potential for different values of ! is shown in figures 5.9 and 5.10.
The maximum of the effective potential V!(r) is roughly at the location of the
unstable circular photon orbit (r = 3M).

The form of the radial wave equation is similar to the quantum mechanical
equation for one-dimensional potential scattering and hence most problems
concerning perturbed black holes involve elements familiar from potential
scattering in quantum mechanics. One would, for example, expect waves of short
wavelength λ � rS to be easily transmitted through the barrier. Waves with
λ ≈ rS will be partly transmitted and partly reflected, and finally waves with
λ� rS should be completely reflected by the black hole barrier.
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5.4.1.4 Basic solutions

Let us consider two linearly independent solutions of the radial wave equations
which have the following asymptotic forms

ûin
! (r∗, ω) ∼

{
e−iωr∗ r∗ → −∞
Aout(ω)eiωr∗ + Ain(ω)e−iωr∗ r∗ → +∞ (5.102)

ûup
! (r∗, ω) ∼

{
Bout(ω)eiωr∗ + Bin(ω)e−iωr∗ r∗ → −∞
e+iωr∗ r∗ → +∞.

(5.103)

They are known as IN and UP modes, respectively. The complex conjugates of
these solutions are also solutions of the radial wave equation. They are known as
OUT and DOWN modes, respectively.

For any two solutions u1 and u2 the Wronskian

W (u1, u2) = u1 du2/dr∗ − u2 du1/dr∗ (5.104)

is constant. Calculating the Wronskian for solutions ûin
! and ûup

! and their complex
conjugates and using their asymptotics, one obtains the following relations:

1+ |Aout|2 = |Ain|2 (5.105)

1+ |Bin|2 = |Bout|2 (5.106)

Bout(ω) = Ain(ω) Bin(ω) = − Āout(ω) = −Aout(−ω) (5.107)

and
W (ûin

! , û
up
! ) = 2iωAin(ω) = 2iωBout(ω). (5.108)

Since |Ain| ≥ 1, the solutions ûin
! and ûup

! are linearly independent.

5.4.1.5 Interpretation of basic solutions

Let us discuss the physical meaning of the basic solutions. By combining the
radial solutions with exp(−iωt) we get functions describing wave propagation.
They have simple physical interpretations. The DOWN solution satisfies the
boundary condition that there is no radiation escaping to infinity. This means
that exactly the right amount of radiation with just the right phase must emerge
from the past horizon H− in order to cancel any radiation that might otherwise
be scattered back to infinity from a wave originally incoming from past infinity.
Thus, in this solution, there is radiation coming in from infinity, radiation
emerging from H− to meet it, and radiation going down the black hole at H+.
The amplitudes of the various waves are such that down is an acceptable solution
to the radial wave equation. The UP mode is defined analogously by the boundary
condition that there be no incoming radiation from infinity. In a similar way the
IN solution does not contain radiation outgoing from H−, while the OUT mode
has no radiation going down the black hole at H+. The situation is presented
graphically in figure 5.11.
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Figure 5.11. IN, UP, OUT and DOWN modes.

One can use the diagrams presented in figure 5.11 as mnemonic rules for
the definition of the basic functions. The regions inside the squares represent the
spacetime in the exterior of the eternal version of the black hole. The straight lines
at the angle of π/4 represent null rays. Two boundaries � + and � − correspond
to asymptotic future and past infinities. The other two boundaries H+ and H−
are the event horizon and the past horizon, respectively. This type of diagram
can be obtained by special conformal transformations that bring infinitely distant
points of the spacetime to a finite distance, see chapter 1. The corresponding
Penrose–Carter conformal diagram proved to be a very powerful tool for the
study of the global structure of spacetime. Asymptotic values of massless fields
in an asymptotically flat physical spacetime are related to the boundary values
at the null surfaces � + and � −, representing the so-called future and past null
infinities.

5.4.2 Evolution of the scalar massless field around a non-rotating black
hole

5.4.2.1 Retarded Green’s function

Time evolution of the scalar massless field around a non-rotating black hole for
given initial data and source j! can be easily obtained by using a retarded Green’s
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function Gret. The retarded Green’s function is a solution of the equation[
∂2

∂r2∗
− ∂2

∂ t2 − V!(r)

]
Gret(r∗, r ′∗, t) = δ(t − t ′)δ(r∗ − r ′∗) (5.109)

which is singled out by the condition G(r∗, r ′∗, t − t ′) = 0 for t < t ′.
The integral transform, reducing the problem to an ordinary differential

equation,

Ĝret(r∗, r ′∗, ω) =
∫ +∞

0−
Gret(r∗, r ′∗, t)eiωt dt (5.110)

is well defined as long as Imω ≥ 0. In fact, Ĝret(r∗, r ′∗, ω) is a holomorphic
function of ω = ω0 + iω1 for ω1 > 0. By a change s = −iω, one can show that
this integral transform is nothing but the usual Laplace transform. By making the
inverse Laplace transformation one obtains

Gret(r∗, r ′∗, t) =
1

2π

∫ +∞+ic

−∞+ic
Ĝret(r∗, r ′∗, ω)e−iωt dω (5.111)

where c is some positive number (this ensures convergence of the integral).

5.4.2.2 Green’s function representation

The integral transform of the retarded Green’s function obeys the equation[
d2

dr2∗
+ ω2 − V!(r)

]
Ĝret(r∗, r ′∗, ω) = δ(r∗ − r ′∗). (5.112)

Since the retarded Green’s function Gret(x, x ′) vanishes when a point x ′ lies to
the past of x , in its decomposition there must be no waves which emerge from
� − and H−. Thus Ĝret(r∗, r ′∗, ω) can be written as

Ĝret(r∗, r ′∗, ω) = −
1

2iωAin(ω)

{
ûin
! (r∗, ω)û

up
! (r

′∗, ω) r∗ < r ′∗
ûin
! (r

′∗, ω)û
up
! (r∗, ω) r∗ > r ′∗.

(5.113)

The factor containing Ain is the Wronskian.

5.4.2.3 Analytical properties

In order to infer the behavior of the Green’s function in different time intervals it
is convenient to deform the contour of integration in the complex ω-plane. For
this purpose we need to know the analytic properties of ûin

! and ûup
! , not only in

the upper half-plane where they are a holomorphic functions of ω, but also in the
lower half-plane. A detailed analysis of this problem can be found in [19]. Here
we just describe the most important results.
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Figure 5.12. Integration contours in the complex ω-plane. The crosses represent the first
few quasinormal modes. The necessary branch cut is taken along the negative imaginary
axis.

The analysis shows that the Wronskian W (IN,UP)= 2iωAin(ω) has isolated
zeros there. This leads to poles of the Green’s function Ĝret(r∗, r ′∗, ω). These
singularities correspond directly to the so called quasinormal modes of the black
hole. It is straightforward to show that the poles are symmetrically distributed
with respect to the imaginary ω-axis; if ωn corresponds to Ain = 0, then −ω̄n

must also do so (see figure 5.12).
In the upper half of the complex ω-plane, the solutions, which are bound at

either end, must behave like

ûin
! (r∗, ω) ∼ e−iωr∗ for r∗ → −∞

ûup
! (r∗, ω) ∼ e+iωr∗ for r∗ → ∞. (5.114)

Their analytical continuations into the lower half-plane will show the same
behavior. Hence, the Green’s function always satisfies ‘future outgoing’
conditions. This Green’s function propagates waves emitted by the source to H+
and � +. It is therefore clear that the solutions corresponding to the quasinormal
modes are regular both at H+ and � +. But it also follows that they will diverge
at H− and � −.

Careful analysis shows that it is necessary to introduce a branch cut in order
to make ûup

! a single-valued function [20]. This cut is usually placed along the
negative imaginary axis, as in figure 5.12.

Given this information, the radiation produced in response to a perturbation
of the black hole can be divided into three components, in accordance with the
contributions from different parts of the deformed contour in the lower half of the
ω-plane:

(i) radiation emitted directly by the source,
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(ii) exponentially damped quasinormal-mode oscillations (contribution of the
poles of the Green’s function) and

(iii) a power-law tail (contribution of the branch cut integral).

5.4.2.4 Quasinormal modes

Scattering resonances (which are the quantum analogues to quasinormal modes)
arise for energies close to the top of a potential barrier. In the black hole case, this
immediately leads to the approximation [21–23]

Reω0 ≈
√

V max
! ≈ 1

3
√

3M

(
!+ 1

2

)
. (5.115)

This approximation for the fundamental mode is poor for low ! (the error is
something like 30% for ! = 2) but it rapidly gets accurate as ! increases.

For the imaginary part of the frequency—the lifetime of the resonance—the
curvature of the potential contains the relevant information [21]. One finds that

Imω0 ≈ −1

2

∣∣∣∣∣ 1

2V!

d2V!
dr2∗

∣∣∣∣∣
1/2

r=rmax

≈ −
√

3

18M
(5.116)

which is accurate to within 10% for the fundamental mode.
Interestingly, similar approximations follow from a different approach.

Consider a congruence of null rays circling the black hole in the unstable photon
orbit at r = 3M . The fundamental mode frequency then follows if the beam
contains ! cycles [24]. The damping rate of the mode can be inferred from the
decay rate of the congruence if the null orbit is slightly perturbed [25].

It is interesting to compare a black hole to other resonant systems in nature.
If we define a quality factor in analogy with the standard harmonic oscillator,

Q ≈ 1

2

∣∣∣∣Reωn

Imωn

∣∣∣∣ (5.117)

the quasinormal-mode approximations given here lead to Q ≈ !. This should be
compared to the typical value for an atom: Q ∼ 106. The Schwarzschild black
hole is thus a very poor oscillator.

5.4.2.5 Late-time behavior

The power-law tail is associated with the branch-cut integral along the negative
imaginary axis in the complex ω-plane. The main contribution gives the |ωM| �
1 part of that integral. A branch-cut contribution to the Green’s function is [19,20]

Gret
B (r∗, r ′∗, t) = (−1)!+1 (2!+ 2)!

[(2!+ 1)!!]2
4M(r∗r ′∗)!+1

t2!+3
. (5.118)
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This result implies that if the source of radiation falls down beyond the
potential barrier the damping of its radiation that is seen by a distant observer
is not purely exponential. The late-time behavior of the field is

 ∼ t−(2!+3). (5.119)

This power-law behavior is connected with the scattering of emitted radiation by
the ‘tail’ of the potential barrier (by the spacetime curvature).

Price [26] found that backscattering by the asymptotic ‘tail’ of the potential
gives rise to a power-law fall-off at late times. Price put his conclusions in
the following succinct form: ‘Anything that can be radiated will be radiated.’
Consequently, a black hole gets rid of all bumps after it is formed by a non-
spherical collapsing star.

5.4.3 Wave fields in the Kerr metric

5.4.3.1 Electromagnetic waves and gravitational perturbations in the Kerr
geometry

The scalar massless field we have considered is a toy model. For astrophysical
applications it is important to understand the behavior of electromagnetic
waves and (in view of coming gravitational wave experiments) gravitational
perturbations. Aspects of the problem connected with the black hole rotation
also might be important. Fortunately, as demonstrated by Teukolsky [27], the
initial set of equations, which describes electromagnetic waves or gravitational
perturbations in the Kerr metric, can be reduced to a form which allows
decoupling. Moreover, the resulting decoupled equations allow separation of
variables. We describe here only the scheme and the main result, omitting details
and long calculations.

The homogeneous equations describing electromagnetic waves or gravita-
tional perturbations propagating in an external gravitational field are of the form

�
ABϕB = 0 (5.120)

where � AB is a covariant differential operator, and A and B represent collective
tensorial indices. For the electromagnetic field

�
µν Aν = ∇ν∇ν Aµ − ∇ν∇µAν (5.121)

and for gravitational perturbations

�
µναβhαβ = − ∇µ∇νhαα −∇α∇αhµν + ∇α∇νhαµ +∇α∇µhα

ν

+ gµν(∇α∇αhββ −∇α∇βhαβ). (5.122)
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5.4.3.2 Field equation decoupling. Teukolsky equation

In the Kerr metric these equations (as well as the equations for other massless
fields with spin s) can be decoupled. This means that there exist three operators

(we denote them sτA, s"
B , and s

∼�) such that the following relation is valid:

sτA�
AB = s

∼� s"
B . (5.123)

Here s = 0,±1/2,±1,±3/2,±2, and |s| is the spin of the field ϕA. For
electromagnetic waves |s| = 1 and for gravitational perturbations |s| = 2.
Relation (5.123) shows that the scalar sψ = s"

BϕB , constructed for any solution
of the equation � ABϕB = 0, obeys the scalar decoupled equation

s
∼� sψ = 0. (5.124)

Usually the covariant operator s
∼� is presented in the form

s
∼�= �−1

s�. (5.125)

We recall that in the Kerr metric
√−g = � sin θ . The scalar second-order

differential operator s� was introduced by Teukolsky [27]. Its explicit form
depends on the choice of coordinates and complex null tetrads. In Boyer–
Lindquist coordinates and for the so-called Kinnersley tetrad, the operator s� is
specified by

s� sψ =
[
(r2 + a2)2

�
− a2 sin2 θ

]
∂2

sψ

∂ t2 +
4aMr

�

∂2
sψ

∂ t∂φ

+
(

a2

�
− 1

sin2 θ

)
∂2

sψ

∂φ2
−�−s ∂

∂r

(
�s+1 ∂sψ

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂sψ

∂θ

)
− 2s

[
a(r − M)

�
+ i cos θ

sin2 θ

]
∂sψ

∂φ

− 2s

(
M(r2 − a2)

�
− r − ia cos θ

)
∂sψ

∂ t
+ (s2 cot2 θ − s)sψ = 0.

(5.126)

This is the so-called Teukolsky equation.

5.4.3.3 Field restoration from solutions of the decoupled equations

A solution of the tensor field equation can be constructed from the solutions of the
related Teukolsky equation. This was demonstrated by Cohen and Kegels [28] for
the electromagnetic field and by Chrzanowski [29] for gravitational perturbations.
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Wald [30] gave a simple proof of a general result which shows how to construct a
field once one has succeeded in deriving a decoupled equation.

In order to describe the idea of this proof, let us introduce a scalar product of
two (generally complex) tensor fields ψA and ϕA

(ψ, ϕ) ≡
∫ √−g d4x ψ Aϕ

A. (5.127)

The action W [ϕ] for a real tensor field ϕ obeying the field equation can then be
written in the compact form

W [ϕ] = 1
2 (ϕ, �ϕ). (5.128)

Further denote by Q# an operator which is conjugated to an operator Q with
respect to the scalar product

(ψ, Qϕ) = (Q#ψ, ϕ). (5.129)

The operator � is then self-conjugated �# = � . By using this property we can
rewrite the equation obtained by conjugation in the form

�
AB

sτ
#
A = s"

#B
s
∼�# . (5.130)

It can be shown that

s
∼�#= �−1−s�. (5.131)

This relation shows that for any solution s$ of the scalar equation

s
∼�# s$ = 0 (5.132)

the tensor function

sϕA = sτ
#
As$ (5.133)

is a solution to the field equation. Moreover, it can be shown that all such solutions
(up to possible gauge transformation) can be represented in this form. Thus,
solutions to the scalar decoupled equation provide complete information about
the perturbing field. For more details see [29–36].

5.4.3.4 Separation of variables, spin-weighted spheroidal harmonics

The coefficients of the Teukolsky equation do not depend on t and φ.
Furthermore, the existence of the Killing tensor in Kerr spacetime yields an
additional symmetry of the Teukolsky equation which makes it possible to solve
it by separation of variables and to write a solution in terms of the modes

s R!m(r, ω) s Zω!m(θ, φ)e
−iωt (5.134)
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where s Zω!m(θ, φ) are the spin-weighted spheroidal harmonics

s Zω!m(θ, φ) = (2π)−1/2
s Sω!m(θ)e

imφ. (5.135)

The angular problem reduces to one of solving

1

sin θ

d

dθ

(
sin θ

d S

dθ

)
+
[

a2ω2 cos2 θ − m2

sin2 θ
− 2aωs cos θ

−2ms cos θ

sin2 θ
− s2 cot2 θ + E − s2

]
S = 0 (5.136)

where the functions s S!m(θ) are regular on the interval [0, π].
The required functions s S!m(θ) thus essentially follow from a Sturm–

Liouville eigenvalue problem for the separation constant E . Boundary conditions
of regularity should be imposed at both θ = 0 and π . According to Sturm–
Liouville theory, the eigenfunctions form a complete, orthogonal set on the
interval 0 ≤ θ ≤ π for each combination of s, aω and m. This infinite set of
eigenfunctions is enumerated by ! [31, 37]. For a = 0 and s = 0 functions
s S!m(θ) coincide with the associated Legendre polynomials Pm

! (cos θ).

5.4.3.5 The radial equation

The radial functions s R!m obey a second-order differential equation [27]

�−s d

dr

(
�s+1 d R

dr

)
+
[

K 2 − 2i s(r − M)K

�
+ 4irωs − λ

]
R = 0 (5.137)

where

K ≡ (r2 + a2)ω − am λ ≡ E − 2amω+ a2ω2 − s(s + 1). (5.138)

An important property of the radial Teukolsky equation is that the two solutions
s R!m and −s R!m are related [3].

Introducing a new dependent variable

sχ!m = (r2 + a2)1/2�s/2
s R!m (5.139)

the radial equation can be written in the form

dsχ!m

dr∗2
+ s V!msχ!m = 0 (5.140)

which is similar to the form of the radial equation for a scalar massless field in
the Schwarzschild geometry. Nevertheless there are important differences. The
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effective potential s V!m is

s V!m(r, ω) = K 2 − 2i s(r − M)K +�(4iωsr − λ)
(r2 + a2)2

− G2 − dG

dr∗
(5.141)

G = r�

(r2 + a2)2
+ s(r − M)

r2 + a2 (5.142)

and r∗ is the ‘tortoise’ coordinate defined by

dr∗ = r2 + a2

�
dr. (5.143)

This potential is complex and it depends on the frequency ω.
In the asymptotic regions (r∗ → ±∞) the potential s V!m takes the form

s V!m(r, ω) =
{
ω(ω + 2i s/r) r∗ → ∞
% 2

s r∗ → −∞. (5.144)

Here
%s = % − i sκ % = ω − m�H (5.145)

and κ = (r+ − M)/(r2+ + a2) is the surface gravity of the Kerr black hole. Two
linearly independent solutions have the asymptotic behavior ∼ r∓s exp(±iωr∗)
at r →∞ and ∼ �±s/2 exp(±i%r∗) at r → r+.

5.4.3.6 Modes

In the same manner as it was done for a massless scalar field in the Schwarzschild
geometry, solutions to the equations describing a free massless field in the exterior
of a Kerr black hole can be specified by prescribing their asymptotics at null
infinity and the horizon. It is possible to introduce four sets of solutions called
IN, UP, OUT, and DOWN modes, correspondingly in the same manner as it was
done for the Schwarzschild spacetime.

Each of the modes is a solution characterized by the set {!mωP} of quantum
numbers, where the spirality P = ±1. These modes are singled out by
the following requirements: IN modes vanish at H− and have non-vanishing
asymptotics at � −. UP modes vanish at � − and are non-vanishing on the past
horizon H−. OUT modes vanish at H+ but not at � +, and finally the DOWN
modes vanish at � + and are non-vanishing on the past horizon H+. Any two of
these four solutions can be used as a complete set in the space of solutions.

5.4.4 Effects connected with black hole rotation

5.4.4.1 Wave evolution and quasinormal modes in the Kerr spacetime

Using mode expansion one can construct a retarded Green’s function as it was
done for the Schwarzschild spacetime. By studying the analytical properties of
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the modes and the Green’s function as functions of the complex frequency ω one
can demonstrate that in the general case of a rotating black hole the time evolution
of radiation from a source of the perturbation is qualitatively the same as for the
Schwarschild black hole. Namely, the emitted radiation consists of the following
three components:

(i) an initial wave burst that contains radiation emitted directly by the source of
the perturbation,

(ii) exponentially damped ‘ringing’ at frequencies that do not depend on the
source of the perturbation at all and

(iii) a power-law ‘tail’ that arises because of backscattering by the long-range
gravitational field.

Quantitive differences which exist between non-rotating and rotating black
hole cases are of the most interest since they, in principle, might allow an observer
receiving radiation from a black hole to determine its angular velocity. Let us
discuss first quasinormal modes in the Kerr spacetime.

When the black hole has nonzero angular momentum, a, the azimuthal
degeneracy is split. For a multipole ! there are consequently 2! + 1 distinct
modes that approach each Schwarzschild mode in the limit a → 0. These modes
correspond to different values of m, where−! ≤ m ≤ !.

Quasinormal modes for Kerr black holes were first calculated by Detweiler
[38, 39]. In the limit of the extremal black hole (a → M), complex frequencies
of quasinormal modes possess the following properties:
for m = ! {

Imωn is almost constant
Reωn increases monotonically

}
as a → M

and for m = −! {
Imωn → 0

Reωn →−m/2

}
as a → M.

It is interesting that some quasinormal modes become very long lived for
rapidly rotating black holes. This could potentially be of great importance for
gravitational-wave detection.

5.4.4.2 Gravitational radiation from a particle plunging into the black hole

In general, the equation governing a black hole perturbation is not homogeneous.
One must typically also include a source term appropriate for the physical
situation under consideration. Perhaps the simplest relevant problem is that of a
test particle moving in the gravitational field of a black hole. When the mass m of
the particle is sufficiently small compared to that of the black hole (m � M), the
problem can be viewed as a perturbation problem. The radiation emitted by a test
particle of mass m which falls radially into a black hole is one of the astrophysical
applications of the perturbation equations.
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Simple dimensional arguments show that the total energy �E , emitted by
the particle of mass m plunging into the black hole of mass M , is proportional
to m2/M . When the black hole is rotating, �E is an asymmetric function of L̃.
As shown in [40, 41], it has a minimum at the negative value of L̃ . This can be
understood in the following way. Positive values of L̃ correspond to a particle that
corotates with the black hole, whereas negative values are for counter-rotation.
When a particle that was initially counter-rotating reaches the vicinity of the black
hole, it will be slowed down because of frame-dragging. Thus, fewer gravitational
waves are radiated. Similarly, an initially corotating particle is speeded up, and
the number of gravitational waves that emerges increases.

5.4.4.3 Superradiant scattering

For wave scattering by an absorbing non-rotating body, the amplitude of the
reflected wave is always less than the amplitude of the infalling wave. In the
presence of a ergosphere, that is, the region around a rotating black hole where
ξ2
(t) > 1, some of the impinging waves can be amplified. This effect is known as

superradiance [42–44]. The condition for superradiant modes is

ω < m�H = ma

2Mr+
. (5.146)

The maximum amplification of an incoming wave is 0.3% for scalar waves,
4.4% for electromagnetic waves, and an impressive 138% for gravitational waves
[45, 46].

5.5 Black hole electrodynamics

5.5.1 Introduction

Black hole electrodynamics is defined as the theory of electrodynamic processes
that can occur outside the event horizon, accessible to observation by distant
observers. At first glance, black hole electrodynamics is quite trivial. Indeed, the
electromagnetic field of a stationary black hole (of a given mass M) is determined
unambiguously by its electric charge Q and rotation parameter a. If the charged
black hole does not rotate, its electromagnetic field reduces to the radial electric
field of the charge Q and is static. Any multipoles higher than the monopole are
absent.

A charged rotating black hole induces a magnetic field and distorts the
geometry of space and generates higher-order electric and magnetic moments.
However, these higher-order moments are determined unambiguously by the
quantities M , a, and Q. These moments are not independent, as one would find
in the case of ordinary bodies.

In astrophysics, the electric charge of a black hole cannot be high. The
magnetic field must also be very weak: the dipole magnetic moment of a black
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hole is µ∗ = Qa. There can be no other stationary electromagnetic field inherent
to a black hole. In this sense, the electrodynamics of, say, radio pulsars possessing
a gigantic ‘frozen-in’ magnetic field of about 1012 G is definitely much richer than
that of the intrinsic fields of black holes.

However, if a black hole is placed in an external electromagnetic field
and if charged particles are present in its surroundings, the situation changes
dramatically and complex electrodynamics does appear. It is this aspect that we
mean when black hole electrodynamics is discussed.

The case which is important for astrophysical applications is that of external
magnetic (not electric) fields and rarefied plasma in which a black hole is
embedded. In this system a regular magnetic field arises, for example, as it gets
cleansed of magnetic loops which fall into a black hole. A regular magnetic field
can also be generated in an accretion disk by the dynamo action.

In order to study the interaction of a black hole with its surrounding fields, we
use the field equations and ‘total absorption’ boundary conditions at the surface
of the black hole. The latter boundary conditions reflect the fact that the event
horizon of a black hole is a null surface (at least at its regular points). Because
of this property, the black hole horizon plays the role of a one-way membrane.
Technically, this type of boundary condition which implies that the black hole
interior cannot affect processes outside the horizon is quite simple, but it makes
black holes different from usual astrophysical objects, which are bodies with a
(timelike) boundary. It helps a lot, especially concerning our intuition, to develop
a formalism in which black holes are more similar to ordinary physical objects.
We describe briefly such an approach known as the ‘membrane paradigm’ and
some important results of black hole electrodynamics.

5.5.2 Electrodynamics in a homogeneous gravitational field

5.5.2.1 Electrodynamics in the uniformly accelerated frame

In order to study the properties of the electromagnetic field in the black hole
vicinity it is instructive to neglect effects connected with curvature at first. Since
the curvature near the horizon is ∼M−2, where M is the black hole mass, this
limit corresponds formally to the case of M → ∞. For an observer at rest near
the horizon of such a black hole, the gravitational field is almost homogeneous.
According to the equivalence principle, physical laws in the reference frame of the
observer mentioned before are identical to the laws in flat spacetime considered
in a uniformly accelerated reference frame. Let us discuss now a formulation of
the standard electrodynamics in a uniformly accelerated frame.

Consider an accelerated observer in flat spacetime in Rindler coordinates,

ds2 = −dT 2 + d Z2 + d X2 + dY 2 (5.147)

T = z sinh(wτ) Z = z cosh(wτ) X = x Y = y. (5.148)

The accelerated observer is located at z = w−1, and w and τ are the four-
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Figure 5.13. Rindler spacetime.

acceleration and proper time of the observer, respectively. The coordinates
(τ, x, y, z) cover the right wedge X > |T | of the Minkowski spacetime. The null
surface U = T − X = 0 plays the role of the event horizon, since the observer
cannot get any information from the region U > 0 lying beyond it.

The electrodynamics in the accelerated frame is described by the standard
Maxwell equations

Fµν ;ν = 4π Jµ F[µν;α] = 0. (5.149)

Since nothing that happens beyond the horizon affects the information available
to the observer, let us simply assume that Fµν vanishes in this region. Substituting
the ansatz F̃µν = Fµν�(U) into the Maxwell equations one gets

F̃µν ;ν = 4π( J̃µ + jµ) F̃[µν;α] + F[µνU,α]δ(U) = 0. (5.150)

Here J̃µ = Jµ�(U) and

jµ = 1

4π
FµνU,νδ(U). (5.151)

This equation shows that in order to have a vanishing field beyond the horizon
there must be an additional surface current jµ. We call this current fictitious. We
introduce it only in order to mimic the correct electromagnetic field outside the
horizon. Certainly, any observer crossing the horizon will not see any currents
until there are real charged particles crossing the horizon. Since jµU,µ = 0 this
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current is propagating along the horizon. One also has

jµ;µ = −JµU,µ. (5.152)

Thus, the fictitious current is conserved until real charged particles cross the
horizon.

5.5.2.2 Fictitious horizon currents for an accelerated charge

Let us consider a simple example. Suppose a pointlike electric charge q is moving
with a constant acceleration w in the Z -direction. Using a standard solution of
this problem in the form of the Lienard–Wiechert potentials, one can obtain the
non-vanishing components of the field strength:

F̃U V = 2q

w2

(ρ2 + η +w−2)

S3 (5.153)

F̃Uρ = −4qρV

w2S3 F̃Vρ = 4qρU

w2S3 (5.154)

where

S = [(ρ2 − η + w−2)2 + 4ηw−2]1/2 (5.155)

V = T − Z η = U V ρ2 = X2 + Y 2 = x2 + y2. (5.156)

Simple calculations show that at the surface U = 0 there is only one non-
vanishing component of the fictitious current

j V = − 2q

πw2

1

(ρ2 +w−2)2
. (5.157)

Thus, one has an axisymmetric distribution of a negative fictitious charge density

σ H = j T = 1

2
j V = − q

πw2

1

(ρ2 + w−2)2
. (5.158)

We took into account that T = V/2 at the surface U = 0. It is easy to check that
the integral of σ over the total X–Y plane is −q .

5.5.2.3 Electric charge in the homogeneous gravitational field

According to the equivalence principle physical laws in the static homogeneous
gravitational field are equivalent to the laws found in a uniformly accelerated
frame in flat spacetime. For our concrete case, this means the following. Let us
write the flat metric in Rindler coordinates

ds2 = −z2w2 dτ 2 + dz2 + dx2 + dy2. (5.159)
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Figure 5.14. Electric field of a pointlike charge in a homogeneous gravitational field and
the corresponding fictitious charge density on the horizon.

A pointlike electric charge q is at rest in this gravitational field at the point
(w−1, 0, 0) and its electric potential is

Aµ = δτµAτ Aτ = −qw
ρ2 + z2 + w−2√

(ρ2 + z2 + w−2)2 − 4z2w−2
. (5.160)

This is a solution of Maxwell’s equations in the Rindler metric:

Ei
,i = 4πρel i = 1, 2, 3 (5.161)
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Ei = (wz)−1 Aτ,i is the (three-dimensional) electric field and ρel = wz J τ .
Integral lines of the vector field Ei are shown in figure 5.14. These lines are

orthogonal to the horizon. The induced negative fictitious charge density on the
horizon is equal to σ H = Ez(z = 0)/4π and it coincides with the expression
given in the previous section. This relation can be considered as a boundary
condition at the horizon. It resembles the boundary condition at a conducting
surface. In the next section we discuss this analogy in more detail.

Let us assume now that the electric charge q slowly moves away from the
horizon and then returns to its initial position. Let v = τ + ln(wz) be an advanced
time. We can rewrite the conservation law for the fictitious currents on the horizon
as

∂vσ
H + ∂⊥ j⊥ = 0. (5.162)

This equation can be integrated for an arbitrary function w(τ) with the following
result

jρ = ẇ
w
σ H jφ = 0. (5.163)

5.5.3 Membrane interpretation

5.5.3.1 Maxwell’s equations in (3+ 1)-form

Following [5] we define a set of observers in the Kerr spacetime which have the
four-velocity uµ such that

uµ = −αδt
µ (5.164)

where α := (��/A)1/2 is the lapse function. Since uµξ
µ

(φ) = 0, this family
of observers has zero angular momentum. By means of the projector hµν =
gµν + uµuν we can obtain spatial vectors and tensors in the reference frame of
the observer.

We introduce the following notation for the so defined electrodynamical
quantities measured by locally non-rotating observers: E is the electric field
strength, B is the magnetic field strength, ρe is the electric charge density, and
j is the electric current density. Denote by % the norm of a Killing vector ξµ(φ)
reflecting the axial symmetry of spacetime,

% ≡ √gφφ =
√

A

�
sin θ. (5.165)

We denote by e
φ̂

a three-dimensional unit vector in the direction of the Killing

vector ξµ(φ). By using this notation, Maxwell’s equations can be written in the
following form:

∇E = 4πρe (5.166)

∇B = 0 (5.167)

∇ × (αB) = 4παj
c

+ 1

c
[Ė+ �βE] (5.168)
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∇ × (αE) = −1

c
[Ḃ+ �βB]. (5.169)

Here
β = ω%e

φ̂
(5.170)

and

ω = gtφ

gφφ
= 2Mar

(r + a)2 −�a2 sin2 θ
(5.171)

is the angular velocity of rotation (with respect to t) of locally non-rotating
observers. The notation �βE is used for the Lie derivative of a vector E along
β

�βE := (β∇)E− (E∇)β. (5.172)

This Lie derivative describes how the vector E varies with respect to the field β.
�βE vanishes when the origin and the end of the vector E are ‘glued’ under a
displacement by β dφ. A dot denotes differentiation with respect to t and ∇ is
the three-dimensional (covariant) gradient operator in the curved ‘absolute’ space
with metric hµν .

The equations (5.166), (5.167) have a familiar form, whereas (5.168),
(5.169) are slightly unusual. The following differences are evident. The function
α appears because the physical time flows differently at different points of space
while the equations are written in terms of the global ‘time’ t (recall that the
acceleration of free fall, a, is related to α in the reference frame of locally non-
rotating observers by the formula a = −c2∇ lnα). Furthermore, the expressions
in brackets are ‘Lie-type’ derivatives (with respect to time) for the set of locally
non-rotating observers who move in absolute space and for whom dx/dt = β.
Thus, these expressions correspond to total derivatives with respect to the times
of E and B, respectively, with the motion of locally non-rotating observers taken
into account.

5.5.3.2 Boundary conditions at the event horizon

The Rindler spacetime is a very good approximation in the narrow strip region
near the event horizon of a black hole. For this reason, the previous results can be
easily generalized to the case of a stationary black hole.

The event horizon is generated by null geodesics which are bicharacteristics
of Maxwell’s equations. The corresponding boundary conditions at the horizon
can be written in a very clear form by introducing a fictitious surface electric
charge density σ H which compensates for the flux of the electric field across
the surface and a fictitious surface electric current iH which closes tangent
components of the magnetic fields at the horizon. This interpretation is used in
the membrane formalism [5].

The horizon of a stationary black hole has topology T × S2, and the surface
with the topology S2 is a two-dimensional surface of infinite gravitational redshift,
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α = 0. The redshifted gravitational acceleration αa ≡ −c2αn ln α remains finite
at the horizon:

(αa)H = −κn (5.173)

where n is a unit vector pointing orthogonally out of the horizon, and κ is the
surface gravity. In the context of calculations near the horizon, it is convenient
to introduce a coordinate system (α, λ, φ), where λ is a proper distance along the
horizon from the north pole toward the equator. In these coordinates, the metric
of the absolute three-space near the horizon takes the form

ds2 = (c2/κ)2 dα2 + dλ2 +% 2 dφ2 (5.174)

and the unit vectors along the ‘toroidal’ (φ), ‘poloidal’ (λ), and ‘normal’ (α)
directions are

eµ
φ̂

∂

∂xµ
= %−1 ∂

∂φ
eµ
λ̂

∂

∂xµ
= ∂

∂λ
nµ

∂

∂xµ
= κ

c2

∂

∂α
. (5.175)

Macdonald and Thorne [47] formulated the conditions at the horizon as
follows:

(i) Gauss’s law: En ≡ E⊥ → 4πσ H ;
(ii) charge conservation law: αjn →− ∂σ H

∂t −(2) ∇iH ;
(iii) Ampere’s law: αB‖ → BH ≡ ( 4π

c )i
H × n; and

(iv) Ohm’s law: αE‖ → EH ≡ RH iH .

In these relations the symbol→ indicates approach to the black hole horizon
along the trajectory of a freely falling observer; (2)∇ is the two-dimensional
divergence at the horizon, and B‖ and E‖ are the magnetic and electric field
components tangent to the horizon. RH ≡ 4π/c is the effective surface resistance
of the event horizon (RH = 377�). The lapse function α in the conditions reflects
the slowdown in the flow of physical time for locally non-rotating observers in the
neighborhood of the black hole.

5.5.4 Electric field of a pointlike charge near a black hole

Let a pointlike charge q be at rest near a Schwarzschild black hole at r = r0,
θ = 0. The electric field created by this charge, found by Linet [48] and Léauté
and Linet [49], reads:

Aµ(x) = −qδt
µ

1

rr0

(
M + "

R

)
(5.176)

where

R2 = (r − M)2 + (r0 − M)2 − 2(r − M)(r0 − M)λ − M2 sin2 θ

(5.177)

" = (r − M)(r0 − M)− M2 cos θ. (5.178)
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Figure 5.15. The electric-field lines of force of a test charge q at rest in the Schwarzschild
metric, in a φ = constant section: (left) lines of force on a curved surface whose geometry
coincides with the section φ = constant of the Schwarzschild metric; (right) the same lines
projected on a plane (‘bird’s-eye view’). The distribution of the fictitious surface charge
σ H is shown on the horizon. The charge q is assumed to be positive.

The electric field E, defined as Ei = −α−1gi j At, j , is

E = q

r0r2

{
M

(
1− r0 − M + M cos θ

R

)
+r [(r − M)(r0 − M)− M2 cos θ ]

R3
(r − M − (r0 − M) cos θ)

}
er̂

+ q(r0 − 2M)(1− 2M/r)1/2 sin θ

R3
e
θ̂

(5.179)

where er̂ and e
θ̂

are unit vectors along the directions of r and θ , respectively.
It is easy to see that at the horizon Eθ → 0 so that electric lines of force

intersect the horizon at right angles. The total flux of E across the horizon is zero
(the black hole is uncharged). The pattern of electric lines of force is shown in
figure 5.15.

The fictitious charge surface density at the boundary of the black hole is

σ H = q[M(1+ cos2 θ)− 2(r0 − M) cos θ ]
8πr0[r0 − M(1 + cos θ)]2 . (5.180)

Let us bring the charge closer to the horizon (r0 → 2M). At a distance
r � r0 − 2M from the horizon, the lines of force become practically radial and
the field strength tends to q/r2. With the exception of a narrow region close to
the horizon, the general picture is almost the same as for a charge placed at the
center of the black hole.
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5.5.5 Black hole in a magnetic field

5.5.5.1 Killing vectors and Maxwell fields

Let us discuss now properties of a black hole immersed in an external magnetic
field which is homogenous at infinity. We consider the magnetic field as a test
field and neglect its back reaction. This problem allows an elegant solution based
on the properties of Killing vector fields. We proceed as follows: a Killing vector
in a vacuum spacetime generates a solution of Maxwell’s equations [50]. Let us
put

Fµν = ξν;µ − ξµ;ν = −2ξµ;ν (5.181)

then
Fµν ;ν = −2ξµ;ν ;ν = 0. (5.182)

The commutator of two covariant derivatives turns out to be (Ricci identity)

ξµ;ν;σ − ξµ;σ ;ν = −ξλRλµνσ . (5.183)

Permuting over the indices µ, ν, and σ , adding the resulting terms, using the
Killing equation and the symmetries of the Riemann tensor, one gets

ξµ;ν;σ = ξλRλσµν. (5.184)

By contracting the indices ν and σ , we obtain

ξµ;ν ;ν = Rµλξ
λ. (5.185)

In a vacuum spacetime we have Rµλ = 0 and hence Fµν associated with the
Killing vector ξµ satisfies the homogeneous Maxwell equation.

5.5.5.2 A black hole in a homogeneous magnetic field

The relation between the Killing vector and an electromagnetic field in Kerr
geometry [51] can be used to construct a solution describing a magnetic test field,
which is homogeneous at infinity. Let us introduce two fields:

F(t)µν = −2ξ(t)µ;ν F(φ)µν = −2ξ(φ)µ;ν. (5.186)

At large distances F(t)µν vanishes, while F(φ)µν asymptotically becomes a
uniform magnetic field.

It is easy to show that for any two-dimensional surface� surrounding a black
hole ∫

�

Fµν dσµν = 0 (5.187)

for both fields. Thus the magnetic monopole charge vanishes for both solutions.
One also has∫

�

∗F(t)µν dσµν = −8πM
∫
�

∗F(φ)µν dσµν = 16πaM. (5.188)



Black hole electrodynamics 173

Here ∗F(t)µν = εµναβFαβ . Thus, the axial Killing vector ξ(φ) generates
a stationary, axisymmetric field, which asymptotically approaches a uniform
magnetic field and, moreover, has electric charge 4aM . The timelike Killing
vector ξ(t) generates a stationary, axisymmetric field, which vanishes at infinity
and has electric charge−2M .

Combining these results we conclude that for a neutral black hole
the electromagnetic field which asymptotically approaches the homogeneous
magnetic field B is given by the vector potential

Ãµ = 1
2 B[ξ(φ)µ + 2aξ(t)µ]. (5.189)

The electrostatic injection energy per unit charge calculated along the
symmetry axis is

ε = [ Ãµξµ(t)]∞r+ = −Ba. (5.190)

Carter [52] proved that ε is constant over the event horizon. Thus a black hole
immersed in a rarefied plasma will accrete charge until ε vanishes. The resulting
black hole charge is

Q = 2BaM. (5.191)

The vector potential for such a black hole is

Aµ = 1
2 Bξ(φ)µ. (5.192)

5.5.6 Mechanism of the power generation

5.5.6.1 Potential difference

The potential difference between the (north) pole of the black hole and its equator,
as measured by an stationary observer vµ ∼ ξµ(t) +�Fξ

µ

(φ), is

�U = U(r+, θ = 0)− U(r+, θ = π/2) (5.193)

Aµ(ξ
µ

(t) +�Fξ
µ

(φ)) = 1
2 B[gtφ +�F gφφ]. (5.194)

One has

gtφ(r+, θ = 0) = gφφ(r+, θ = 0) = 0 (5.195)

gtφ(r+, θ = π/2) = −a gφφ(r+, θ = π/2) = r2+ + a2. (5.196)

Thus

�U = 1
2 B(r2+ + a2)(�H −�F ) = 1

2 Ba(1−�F/�H ). (5.197)

For a stationary observer co-rotating with a black hole �U vanishes. For
�F �= �H there is a non-vanishing electric potential.

One can easily ‘predict’ this effect by using the analogy of a black hole
horizon with a conducting surface with the effective surface resistance RH =
4π/c = 377�. It is well known that a rotation of a metallic conducting sphere in
an external homogeneous magnetic field generates a difference in the potentials
between the pole and the equator of the sphere. Such a device is known as a
unipolar inductor.
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5.5.6.2 Black hole magnetosphere and efficiency of the power generating
process

Astrophysical black holes are surrounded by plasma. In the most important case
for astrophysics, the conductivity of the plasma is so high that the electric field in
the reference frame, comoving with the plasma, vanishes, and the magnetic lines
of force are ‘frozen’ into the plasma. In this case, the electric and magnetic fields
in an arbitrary reference frame are perpendicular to each other (degenerate fields):

E · B = 0. (5.198)

Note that this condition is only an approximation and generally a small
longitudinal electric field is present. To solve problems concerning the
configuration of fields, currents, and charge distributions, it is only necessary that
the inequality

|E · B| � |E2 − B2| (5.199)

is satisfied. Small deviations from the exact equation in the neighborhood of a
black hole may prove to be important for a number of astrophysical processes.

To simplify the problem, it is usually assumed that the system (a black
hole, surrounding plasma, and the electromagnetic field) is stationary and
axisymmetric.

Denote by ṽµ a vector of an observer comoving with the plasma. Then one
has

Fµνṽ
ν = 0. (5.200)

In the reference frame of this observer, the electric field vanishes. This property
is also valid for any frame which is moving with respect to ṽµ with the velocity
along the magnetic field. Let us choose a special solution of equation (5.200)
which meets the symmetry property

vµ ∼ ξµ(t) +�Fξ
µ

(φ) (5.201)

where �F is a function of r and θ . Let us stress that the vector ṽµ, which has
evident physical meaning, must always be timelike, while the vector vµ can be
spacelike. This happens near the horizon if �F ≈ �H .

In the force-free approximation, the rotational energy of the black hole is
extracted at a rate of [5]

� = −d(Mc2)

dt
=
∫

H

�F (�H −�F )

4πc

AH sin2 θ

�H
B2⊥ d�H . (5.202)

This energy is transferred along magnetic lines of force into a region located far
away from the black hole where the force-free condition is violated; energy is
pumped into accelerated particles, and so forth.

The power is maximal when �F = �H/2. Macdonald and Thorne [47]
demonstrated that this condition is likely to be implemented in the described
model.
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In order of magnitude, the power of the ‘electric engine’ outlined here is

� ≈
(

1039 erg

s

)( M

106M�

)2 ( a

amax

)2 ( B

104 G

)2

. (5.203)

Here B is the magnetic field strength in the neighborhood of the black hole.
Sometimes this electric engine is described in terms of concepts taken from
electrical engineering [47, 53–56].

5.5.6.3 Black hole as a unipolar inductor

The lines of constant θ are equipotential curves at the horizon since the field EH

is meridional. Hence, the potential difference between two equipotential lines
(marked by l and 2) is

�U H =
∫ 2

1
EH dl ≈ (1017 V)

(
M

106M�

)(
B

104 G

)(
a

amax

)
(5.204)

where dl is the distance element along a meridian of the black hole surface
and �U H is the difference between the values of U H on the equipotentials 1
and 2. The approximate equality is valid if �F ≈ �H/2, maximal �H , and
the equipotentials 2 and 1 corresponding to the equatorial and polar regions,
respectively.

However, �U H can be written in terms of the surface current iH and
resistance:

�U H = RH iH�l (5.205)

where �l is the distance along the meridian between the equipotentials 2 and 1.
Substituting the expression for iH , we obtain

�U H = I RH |�l|
2π%H

= I�Z H (5.206)

where

�Z H ≡ RH |�l|
2π%H

(5.207)

is the total resistance between the equipotential lines 2 and 1. (If the equipotentials
2 and 1 correspond to the equator and to θ ≈ π/4, the integration of (5.207) yields
�Z H ≈ 30 �.)

These formulas permit the conclusion that in this model the rotating black
hole acts as a battery with an e.m.f. of order

(1017 V)

(
M

106 M�

)(
B

104 G

)
(5.208)

and an internal resistance of about 30 �.
This mechanism (and a number of its variants) has been employed in

numerous papers for the explanation of the activity of the nuclei of galaxies and
quasars.
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Chapter 6

Close encounters of black holes

Domenico Giulini
University of Freiburg, Germany

Processes involving close encounters of black holes, like their mutual scattering
or merging, can be analytically approached by Einstein’s equations without
additional matter. Some characteristic features of these equations are reviewed
and set in relation to Newtonian concepts. The initial-value problem is explained
and techniques are presented that allow the explicit construction of multi-black-
hole initial data. Some physical properties of these data are discussed and, finally,
a perspective on recent developments is given.

6.1 Introduction and motivation

In my chapter I will try to explain how scattering and merging processes between
black holes can be described analytically in general relativity (GR). This is a
vast subject and I will focus attention on the basic issues, rather than trying to
explain the analytical details of approximation schemes etc. I will also not discuss
numerical aspects, which are beyond my competence, and which would anyway
require a separate chapter. I will address the following main topics:

(1) a first step beyond Newtonian gravity,
(2) constrained evolutionary structure of Einstein’s equations,
(3) the 3+ 1 split and the Cauchy initial-value problem,
(4) black hole data and
(5) problems and recent developments

with emphasis on the fourth entry. However, I will also spend some time in
explaining some of the specialties of GR, like the absence of a point-particle
concept and the non-trivial linkage between the field equations and the equations
of motion for matter. These points should definitely be appreciated before one
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goes on to discuss black holes, which are solutions to the vacuum Einstein
equations representing extended objects.

The following points seem to me the main motivations for studying the
problem of black hole collision:

• Coalescing black holes are regarded as promising sources for the detection
of gravitational waves by earth-based instruments.

• Close encounters of black holes provide physically relevant situations for the
investigation of the strong-field regime of general relativity.

• The dynamics of simple black hole configurations is regarded as an ideal
testbed for numerical relativity.

My conventions are as follows: spacetime is a manifold M with Lorentzian
metric g of signature (−,+,+,+). Greek indices range from 0 to 3, Latin indices
from 1 to 3 unless stated otherwise. The covariant derivative is denoted ∇µ,
ordinary partial derivatives by ∂µ or sometimes simply by a lower-case µ. The
relation := (=:) defines the left- (right-) hand side. The gravitational constant in
GR is κ = 8πG/c2, where G is Newton’s constant and c the velocity of light. A
symbol like O(εn) stands collectively for terms falling off at least as fast as εn .

6.2 A first step beyond Newtonian gravity

It can hardly be overstressed how useful the concept of a point mass is in
Newtonian mechanics and gravity. It allows us to probe the gravitational field
pointwise and to reduce the dynamical problem to the mathematical problem of
finding solutions to a system of finitely many ordinary differential equations.
To be sure, just postulating the existence of point masses is not sufficient. To
be consistent with the known laws of physics, one must eventually understand
the point mass as an idealization of a highly localized mass distribution which
obeys known field-theoretic laws, such that in the situations at hand most of the
field degrees of freedom effectively decouple from the dynamical laws for those
collective degrees of freedom in which one is interested, e.g. the centre of mass.
In Newtonian gravity this usually requires clever approximation schemes but is
not considered to be a problem of fundamental nature. Although this is true for
the specific linear theory of Newtonian gravity, this need not be so for comparably
simple generalizations, as will become clear later.

In GR the situation is markedly different. A concentration of more than
one Schwarzschild mass in a region of radius less than the Schwarzschild radius
will lead to a black hole whose behaviour away from the stationary state cannot
usually be well described by finitely many degrees of freedom. It shakes
and vibrates, thereby radiating off energy and angular momentum in the form
of gravitational radiation. Moreover, it is an extended object and cannot be
unambiguously ascribed an (absolute or relative) position or individual mass.
Hence the problem of motion, and therefore the problem of scattering of black
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holes, cannot be expected to merely consist of corrections to Newtonian scattering
problems. Rather, the whole kinematic and dynamical setup will be different
where many of the established concepts of Newtonian physics need to be replaced
or at least adapted, very often in a somewhat ambiguous way. Among these
are mass, distance, and kinetic energy. For example, one may try to solve
the following straightforward sounding problem in GR, whose solution one
might think has been given long ago. Consider two unspinning black holes,
momentarily at rest, with equal individual mass m, mutual distance !, and no
initial gravitational radiation around. What is the amount of energy released
via gravitational radiation during the dynamical infall? In such a situation we
can usually make sense of the notions of ‘spin’ (hence unspinning) and ‘mass’;
but ambiguities generally exist in defining ‘distance’ and, most important of
all, ‘initial gravitational radiation’. Such difficulties persist over and above the
ubiquitous analytical and/or numerical problems which are currently under attack
by many research groups.

To those who are not so familiar with GR and like to see Newtonian
analogies, I wish to mention that there is a way to consistently model some of the
nonlinear features of Einstein’s equations in a Newtonian context, which shares
the property that it does not allow for point masses. I will briefly describe this
model since it does not seem to be widely known.

First recall the field equation in Newtonian gravity, which allows us to
determine the gravitational potential φ (whose negative gradient, −�∇φ, is the
gravitational field) from the mass density ρ (the ‘source’ of the gravitational field):

�φ = 4πGρ. (6.1)

Now suppose one imposes the following principle for a modification of (6.1): all
energies, including the self-energy of the gravitational field, act as source for the
gravitational field. In order to convert an energy density ε into a mass density ρ,
we adopt the relation ε = ρc2 from special relativity (the equation we will arrive
at can easily be made Lorentz invariant by adding appropriate time derivatives).
The question then is whether one can modify the source term of (6.1) such that
ρ → ρ + ρgrav with ρgrav := εgrav/c2, where εgrav is the energy density of
the gravitational field as predicted by this very same equation (condition of self-
consistency). It turns out that there is indeed a unique such modification, which
reads:

�φ = 4πG

c2 φ

[
ρ + c2

8πG
( �∇φ/φ)2

]
. (6.2)

It is shown in the appendix at the end of the chapter that this equation indeed
satisfies the ‘energy principle’ as just stated. (For more information and a proof
of uniqueness, see [21].) The gravitational potential is now required to be always
positive, tending to the value c2 at spatial infinity (rather than zero as for (6.1)).
The second term on the right-hand side of (6.2) corresponds to the energy density
of the gravitational field. Unlike the energy density following from (6.1) (which
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is− 1
8πG |∇φ|2) it is now positive definite. This does not contradict the attractivity

of gravity for the following reason: the rest-energy density of a piece of matter
is in this theory not given by ρc2, but by ρφ, that is, it depends on the value of
the gravitational potential at the location of the matter. The same piece of matter
located at a lower gravitational potential has less energy than at higher potential
values. In GR this is called the universal redshift effect. Here, as in GR, the active
gravitational mass also suffers from this redshift, as is immediate from the first
term on the right-hand side of (6.2), where ρ does not enter alone, as in (6.1), but
is multiplied with the gravitational potential φ. With respect to these features our
modification (6.2) of Newtonian gravity mimics GR quite well.

We mention in passing that (6.2) can be ‘linearized’ by introducing the
dimensionless field ψ := √φ/c, in terms of which (6.2) reads:

�ψ = 2πG

c2
ρψ. (6.3)

The boundary conditions are now ψ(r → ∞) → 1. Hence only those linear
combinations of solutions whose coefficients add up to one are again solutions.
For ρ ≥ 0 it also follows that solutions to (6.3) can never assume negative values,
since otherwise the function ψ must have a negative minimum (because of the
positive boundary values) and therefore non-negative second derivatives are there.
But then (6.3) cannot be satisfied at the minimum, hence ψ must be non-negative
everywhere. This implies that solutions of (6.2) are also non-negative. To be sure,
for mathematical purposes (6.3) is easier to use than (6.2), but note that φ and not
ψ is the physical gravitational potential.

We now show how these nonlinear features render impossible the notion of
a point mass, and even induce a certain black hole behaviour on their solutions.
Let us be interested in static, spherically symmetric solutions to (6.2) with source
ρ, which is zero for r > R and constant for r < R. We need to distinguish two
notions of mass. One mass just counts the amount of ‘stuff’ located within r < R.
You may call it the ‘bare mass’ or ‘baryonic mass’, since for ordinary matter it is
proportional to the baryon number. We denote it by MB. It is simply given by

MB :=
∫

space
d3x ρ. (6.4)

The other mass is the ‘gravitational mass’, which is measured by the amount of
flux of the gravitational field to ‘infinity’, that is, through the surface of a sphere
whose radius tends to infinity. We call this mass MG. It is given by

MG := 1

4πG
lim

r→∞

∫
S2(r)

(−�∇φ · �n) dσ (6.5)

where r = |�x |, �x/r = �n, S2(r) is the two-sphere of radius r and dσ is its
surface element. MG should be identified with the total inertial mass of the
system, in full analogy to the ADM mass in GR (see equation (6.35)). Hence
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MGc2 is the total energy of the system, with gravitational binding energy also
taken into account. The masses MB and MG can dimensionally be turned into
radii by writing RB := GMB/c2 and RG := GMG/c2, and further turned into
dimensionless quantities via rescaling with R, the radius of our homogeneous
star. We write x := RB/R and y := RG/R.

For each pair of values for the two parameters MB and R there is a unique
homogeneous-star solution to (6.2), whose simple analytical form need not
interest us here (see [21]). Using it we can calculate MG, whose dependence
on the parameters is best expressed in terms of the dimensionless quantities x and
y:

y = f (x) = 2

(
1− tanh(

√
3x/2)√

3x/2

)
. (6.6)

The function f maps the interval [0,∞]monotonically to [0, 2]. This implies the
following inequality

MG < 2Rc2/G (6.7)

which says that the gravitational mass of the star is bounded by a purely geometric
quantity. It corresponds to the statement in GR that the star’s radius must be
bigger than its Schwarzschild radius, which in isotropic coordinates is indeed
given by RS = GMG/2c2. It can be proven [21] that the bound (6.7) still exists for
non-homogeneous spherically symmetric stars, so that the somewhat unphysical
homogeneity assumption can be lifted. The physical reason for this inequality is
the ‘redshift’, i.e. the fact that the same bare mass at lower gravitational potential
produces less gravitational mass. Hence adding more and more bare mass into
the same volume pushes the potential closer and closer to zero (recall that φ
is always positive) so that the added mass becomes less and less effective in
generating gravitational fields. The inequality then expresses the mathematical
fact that this ‘redshifting’ is sufficiently effective so as to give finite upper bounds
to the gravitational mass, even for unbounded amounts of bare mass.

The energy balance can also be nicely exhibited. Integrating the matter

energy density φρ and the energy density of the gravitational field, c4

8πG (
�∇φ/φ)2,

we obtain

Ematter = MBc2
(

1− 6RB

5R
+ O(R2

B/R2)

)
(6.8)

Efield = MBc2
(

3RB

5R
+ O(R2

B/R2)

)
(6.9)

Etotal = MBc2
(

1− 3RB

5R
+ O(R2

B/R2)

)
= MGc2. (6.10)

Note that the term−3MBc2 RB/5R in (6.10) is just the Newtonian binding energy.
At this point it is instructive to verify the remarks we made earlier about the
positivity of the gravitational energy. Shrinking a mass distribution enhances the
field energy, but diminishes the matter energy twice as fast, so that the overall
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energy is also diminished, as it must be due to the attractivity of gravity. But here
this is achieved with all involved energies being positive, unlike in Newtonian
gravity. Note that the total energy, MG, cannot become negative (since φ cannot
become negative, as has already been shown). Hence one also cannot extract an
infinite amount of energy by unlimited compression, as is possible in Newtonian
gravity. This is the analogue in our model theory to the positive mass theorem in
GR.

We conclude by making the point announced earlier, namely that the
inequality (6.7) shows that point objects of finite gravitational mass do not exist
in the theory based upon (6.2); mass implies extension! Taken together with the
lesson from special relativity, that extended rigid bodies also do not exist (since
the speed of elastic waves is less than c), we arrive at the conclusion that the
dynamical problem of gravitating bodies and their interaction is fundamentally
field theoretic (rather than point mechanical) in nature. Its proper realization is
GR to which we now turn.

6.3 Constrained evolutionary structure of Einstein’s
equations

In GR the basic field is the spacetime metric gµν , which comprises the
gravitational and inertial properties of spacetime. It defines what inertial motion
is, namely a geodesic

ẍλ + �λµν ẋµ ẋν = 0 (6.11)

with respect to the Levi-Civita connection

�λµν := 1
2 gλσ (−gµν,σ + gσµ,ν + gνσ,µ). (6.12)

(Since inertial motion is ‘force free’ by definition, you may rightly ask whether
it is correct to call gravity a ‘force’.) The gravitational field gµν is linked to the
matter content of spacetime, represented in the form of the energy–momentum
tensor Tµν , by Einstein’s equations

Gµν := Rµν − 1
2 gµνR = κTµν. (6.13)

Due to the gauge invariance with respect to general differentiable point
transformations (i.e. diffeomorphisms) of spacetime, one has the identities (as
a consequence of Noether’s second theorem)

∇µGµν ≡ 0 . (6.14)

Being ‘identities’ they hold for any Gµν , independent of any field equation. With
respect to some coordinate system xµ = (x0, . . . x3) we can expand (6.14) in
terms of ordinary derivatives. Preferring the coordinate x0, this reads:

∂0G0ν = −∂kGkν − �µµλGλν − �νµλGµλ. (6.15)
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Since Gµν contains no higher derivatives of gµν than the second, the right-
hand side of this equation also contains only second x0 derivatives. Hence
(6.15) implies that the four components G0ν only involve first x0-derivatives.
Now choose x0 the as time coordinate. The four (0, ν)-components of (6.13)
then do not involve second time derivatives, unlike the space–space components
(i, j). Hence the time–time and time–space components are constraints, that is,
equations that constrain the allowed choices of initial data, rather than evolving
them.

This is not an unfamiliar situation as it similarly occurs for Maxwell’s
equations in electromagnetism (EM). Let us recall this analogy. We consider
the four-dimensional form of Maxwell’s equations in terms of the vector potential
Aµ, whose antisymmetric derivative is the field tensor Fµν := ∂µAν − ∂ν Aµ,
comprising the electric (Ei = F0i ) and magnetic (Bi = −Fjk , i jk cyclic) fields.
Maxwell’s equations are

Eν := ∂µFµν − 4π

c
jν = 0. (6.16)

Due to its antisymmetry, the field tensor obviously obeys the identity

∂µ∂νFµν ≡ 0 (6.17)

which here is the analogue of (6.14), an identity involving third derivatives in the
field variables. Using (6.17) in the divergence of (6.16) yields

∂νEν = −4π

c
∂ν jν (6.18)

which shows that Maxwell’s equations imply charge conservation as the
integrability condition. Let us interpret the rôle of charge conservation in the
initial-value problem. Decomposing (6.17) into space and time derivatives gives

∂0∂νF0ν = −∂k∂νFkν . (6.19)

Again the right-hand side involves only second time derivatives implying that the
zero-component of (6.16) involves no second time derivatives. Hence the time
component of (6.16) is merely a constraint on the initial data; clearly it is just
Gauss’s law �∇ · �E − 4πρ = 0. Its change under time evolution according to
Maxwell’s equations is

∂0 E0 = ∂νEν − ∂k Ek

= − 4π

c
∂ν jν − ∂k Ek (6.20)

where we have used the identity (6.18) in the second step. Suppose now that on
the initial surface of constant x0 we put an electromagnetic field which satisfies
the constraint, E0 = 0, and which we evolve according to Ek = 0 (implying
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∂k Ek = 0 on that initial surface). Then (6.20) shows that charge conservation is
a necessary and sufficient condition for the evolution to preserve the constraint.

Let us return to GR now, where the overall situation is entirely analogous.
Now we have four constraints

E0ν := G0ν − κT 0ν = 0 (6.21)

and six evolution equations, which we write

Eij := Gij − κT i j = 0. (6.22)

The identity (6.14) now implies

∇µEµν = −κ∇µTµν (6.23)

which parallels (6.18). Here, too, the time derivative of the constraints is easily
calculated,

∂0 E0ν = ∇µEµν − ∂k Ekν − �0
0λEλν − �ν0λE0λ

= − κ∇µTµν − ∂k Ekν − �0
0λEλν − �ν0λE0λ (6.24)

by using (6.23) in the last step. Now consider again the evolution of initial data
from a surface of constant x0. If they initially satisfy the constraints and are
evolved via Eij = 0 (hence all spatial derivatives of Eµν vanish initially) they
continue to satisfy the constraints if and only if the energy–momentum tensor of
the matter satisfies

∇µTµν = 0. (6.25)

Hence we see that the ‘covariant conservation’ of energy–momentum, expressed
by (6.25), plays the same rôle in GR as charge conservation plays in EM. This
means that you cannot just prescribe the motion of matter and then use Einstein’s
equations to calculate the gravitational field produced by that source. You have
to move the matter in such a way that it satisfies (6.25). But note that at this
point there is a crucial mathematical difference to charge conservation in EM:
charge conservation is a condition on the source only, it does not involve the
electromagnetic field. This means that you know a priori what to do in order
not to violate charge conservation. However, (6.25) involves the source and
the gravitational field. The latter enters through the covariant derivatives which
involve the metric gµν through the connection coefficients (6.12). Hence here
(6.25) cannot be solved a priori by suitably restricting the motion of the source.
Rather we have a consistency condition which mutually links the problem of
motion for the sources and the problem of field determination. It is this difference
which makes the problem of motion in GR exceedingly difficult. (A brief and
lucid presentation of this problem, drawing attention to its relevance in calculating
the generation of gravitational radiation by self-gravitating systems, was given
in [15]. A broader summary, including modern developments, is [14].)
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For example, for pressureless dust represented by Tµν = ρc2 UµU ν , where
ρ is the local rest-mass density and Uµ is the vector field of four-velocities of
the continuously dispersed individual dust grains, (6.25) is equivalent to the two
equations:

∇µ(ρUµ) = 0 (6.26)

U ν∇νUµ = 0. (6.27)

The first states the conservation of rest-mass. The second is equivalent to the
statement that the vector field Uµ is geodesic, which means that its integral
lines (the world lines of the dust grains) are geodesic curves (6.11) with respect
to the metric gµν . Hence we see that in this case the motion of matter is
fully determined by (6.25), i.e. by Einstein’s equations, which imply (6.25) as
integrability condition. This clearly demonstrates how the problem of motion
is inseparably linked with the problem of field determination and that these
problems can only be solved simultaneously. The methods used today use
clever approximation schemes. For example, one can make use of the fact that
there is a difference of one power in κ between the field equations and their
integrability condition. Hence, in an approximation in κ , it is consistent for the
nth-order approximation of the field equations to have the integrability conditions
(equations of motions) satisfied to n − 1st order.

Clearly the problem just discussed does not arise for the matter-free Einstein
equations for which Tµν ≡ 0. Now recall that black holes are described by matter-
free equations, too. Hence, the mathematical problem just described does not
occur in the discussion of their dynamics. In this aspect the discussion of black
hole scattering is considerably easier than, e.g., that of neutron stars.

6.4 The 3 + 1 split and the Cauchy initial-value problem

We saw that the ten Einstein equations decompose into two sets of four and
six equations respectively, four constraints which the initial data have to satisfy,
and six equations driving the evolution. As a consequence, there will be
four dynamically undetermined components among the ten components of the
gravitational field gµν . The task is to parametrize the gµν in such a way that
four dynamically undetermined functions can be cleanly separated from the other
six. One way to achieve this is via the splitting of spacetime into space and time
(see [22] for a more detailed discussion). The four dynamically undetermined
quantities will be the famous lapse (one function α) and shift (three functions β i ).
The dynamically determined quantity is the Riemannian metric hi j on the spatial
three-manifolds of constant time. These together parametrize gµν as follows:

ds2 = −α2(dx0)2 + hik (dxi + β i dx0)(dxk + βk dx0). (6.28)

The physical interpretation of α and β i is: think of spacetime as the history of
space. Each ‘moment’ of time, x0 = t , corresponds to an entire three-dimensional
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slice �t . Obviously there is plenty of freedom in how to ‘waft’ space through
spacetime. This freedom corresponds precisely to the freedom to choose the 1+3
functions α and β i . For one thing, you may freely specify how far for each
parameter step dt you push space in a perpendicular direction forward in time.
This is controlled by α, which is just the ratio ds/dt of the proper perpendicular
distance between the hypersurfaces �t and �t+dt . This speed may be chosen in
a space- and time-dependent fashion, which makes α a function on spacetime.
Second, let a point be given with coordinates xi on �t . Going from xi in a
perpendicular direction you meet �t+dt in a point with coordinates xi + dxi ,
where dxi can be chosen at will. This freedom of moving the coordinate system
around while evolving is captured by β i ; one writes dxi = β i dt . Clearly this
moving around of the spatial coordinates can also be made in a space- and time-
dependent fashion, so that the β i are functions of spacetime, too.

Let nµ be the vector field in a spacetime which is normal to the spatial
sections of constant time. It is given by n = 1

α
(∂/∂x0 − β i∂/∂xi ), as one may

readily verify by using (6.28) (you have to check that n is normalized and satisfies
g(n, ∂/∂xi ) = 0). We define the extrinsic curvature, Kij , to be one-half the Lie
derivative of the spatial metric in the direction of the normal:

Kij := 1

2
Lnhi j = 1

2α

(
∂hi j

∂x0 − 2D(iβ j )

)
(6.29)

where D is the spatial covariant derivative with respect to the metric hi j . As
usual, a round bracket around indices denotes their symmetrization. Note that, by
definition, Kij is symmetric. Finally we denote the Ricci scalar of hi j by R(3).

We can now write down the four constraints of the vacuum Einstein
equations in terms of these variables:

0 = G(n, n) = 1
2 (R

(3) + K ij Ki j − (K i
i )

2) (6.30)

0 = G(n, ∂/∂x j ) = Di (K
i
j − δi

j K k
k ). (6.31)

Equations (6.30) and (6.31) are referred to as the Hamiltonian constraint and
momentum constraint, respectively. The six evolution equations of second order
in the time derivative can now be written as 12 equations of first order. Six of
them are just (6.29), read as the equation that relates the time derivative ∂hi j /∂x0

to the ‘canonical data’ (hi j , Kij ). The other six equations, whose explicit form
needs not concern us here (see e.g. [22]), express the time derivative of Kij in
terms of the canonical data. Both sets of evolution equations contain, on their
right-hand sides, the lapse and shift functions, whose evolution is not determined
but must be specified by hand. This specification is a choice of gauge, without
which one cannot determine the evolution of the physical variables (hi j , Kij ).

The initial-data problem takes now the following form:

(1) Choose a topological three-manifold�.
(2) Find on � a Riemannian metric hi j and a symmetric tensor field Kij which

satisfy the constraints (6.30) and (6.31).
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(3) Choose a lapse function α and a shift vector field β i , both as functions of
space and time, possibly according to some convenient prescription (e.g.
singularity avoiding gauges, like maximal slicing).

(4) Evolve initial data with these choices of α and β i according to the 12
equations of first order. By consistency of Einstein’s equations, the
constraints will be preserved during this evolution, independent of the
choices for α and β i .

The backbone of this setup is a mathematical theorem, which states that
for any set of initial data, taken from a suitable function space, there is, up to
a diffeomorphism, a unique maximal Einstein spacetime developing from these
data [7].

6.5 Black hole data

6.5.1 Horizons

By black hole data we understand vacuum data which contain apparent horizons.
The informal definition of an apparent horizon is that it is the boundary of a
trapped region, which means that its orthogonal outgoing null rays must have
zero divergence. (Inside the trapped region they converge for any two-surface, by
the definition of a ‘trapped region’.) The Penrose–Hawking singularity theorems
state that the existence of an apparent horizon implies that the evolving spacetime
will be singular (assuming the strong energy condition). Given also the condition
that singularities cannot be seen by observers far off, a condition usually called
cosmic censorship, one infers the existence of an event horizon and hence a black
hole. One can then show that the intersection of the event horizon with the spatial
hypersurface lies on or outside the apparent horizon (for stationary spacetimes
they coincide). The reason why one does not deal with event horizons directly is
that one cannot tell whether one exists by just looking at initial data. In principle
one would have to evolve them to the infinite future, which is beyond our abilities
in general. In contrast, apparent horizons can be recognized once the data on
an initial slice are given. The formal definition of an apparent horizon is the
following: given initial data (�, hi j , Kij ) and an embedded two-surface σ ⊂ �
with outward pointing normal νi , σ is an apparent horizon if and only if the
following relation between Kij , the extrinsic curvature of � in spacetime, and
ki j , the extrinsic curvature of σ in �, is satisfied,

qi j ki j = −qi j Ki j (6.32)

where qi j := hi j −νiν j is just the induced Riemannian metric on σ , so that (6.32)
simply says that the restriction of Kij to the tangent space of σ has opposite trace
to ki j . (The minus sign on the right-hand side of (6.32) signifies a future apparent
horizon corresponding to a black hole which has a future event horizon. A plus
sign would signify a past apparent horizon corresponding to a ‘white hole’ with
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past event horizon.) This means that once we have the data (�, hi j , Kij ) we can
in principle find all two-surfaces σ ⊂ � for which (6.32) holds and therefore find
all apparent horizons.

6.5.2 Poincaré charges

By Poincaré charges we shall understand quantities like mass, linear momentum,
and angular momentum. In GR they are associated with an asymptotic Poincaré
symmetry (see [4]), provided that the data (�, hi j , Kij ) are asymptotically flat in
a suitable sense, which we will now explain. Topologically asymptotic flatness
means that the non-trivial ‘topological features’ of � should all reside in a
bounded region and not ‘pile up’ at infinity. More formally this is expressed by
saying that there is a bounded region B ⊂ � such that�− B (the complement of
B) consists of a finite number of disjoint pieces, each of which looks topologically
like the complement of a ball in �

3 . These asymptotic pieces are also called
the ends of the manifold �. Next comes the geometric restriction imposed
by the condition of asymptotic flatness. It states that for each end there is
an asymptotically Euclidean coordinate system {x1, x2, x3} in which the fields
(hi j , Kij ) have the following fall-off for r → ∞ (r =

√
(x1)2 + (x2)2 + (x3)2,

nk = xk/r ):

hi j (x
k) = δi j + si j (nk)

r
+ O(r−1−ε) (6.33)

Kij (x
k) = ti j (nk)

r2 + O(r−2−ε). (6.34)

Moreover, in order to have convergent expressions for physically relevant
quantities, like, e.g., angular momentum (see later), the field si j must be an even
function of its argument, i.e. si j (−nk) = si j (nk), and ti j must be an odd function,
i.e. ti j (−nk) = −ti j (nk).

Under these conditions each end can be assigned mass, momentum, and
angular momentum, which are conserved during time evolution. They may be
computed by integrals over two-spheres in the limit that the spheres are pushed
to larger and larger radii into the asymptotically flat region of that end. These so-
called ADM integrals (first considered by Arnowitt, Deser, and Misner in [1]) are
given by the following expressions, which we give in ‘geometric’ units (meaning
that in order to get them in standard units one has to multiply the mass expression
given below by 1/κ and the linear and angular momentum by c/κ):

M = lim
r→∞

∫
S2(r)

δi j (∂i h jk − ∂khi j )n
k dσ (6.35)

Pi = lim
r→∞

∫
S2(r)

(K i
k − δi

k K j
j )n

k dσ (6.36)

Si = lim
r→∞

∫
S2(r)

εi j l x
j (K l

k − δl
k K n

n )n
k dσ. (6.37)
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6.5.3 Maximal and time-symmetric data

The constraints (6.30), (6.31) are too complicated to be solved in general. Further
conditions are usually imposed to reduce the complexity of the problem: data
(hi j , Kij ) are called maximal if K i

i = hi j Ki j = 0. The name derives from the
fact that K i

i = 0 is the necessary and sufficient condition for a hypersurface to
have a stationary volume to first order with respect to deformations in the ambient
spacetime. Even though stationarity does not generally imply extremality, one
calls such hypersurfaces maximal. Note also that since spacetime is a Lorentzian
manifold, extremal spacelike hypersurfaces will be of maximal rather than
minimal volume. In contrast, in Riemannian manifolds one would speak of
minimal surfaces.

A much stronger condition is to impose Kij = 0 which, as seen from (6.36)
and (6.37), implies that all momenta and angular momenta vanish. Only the mass
is now allowed to be non-zero. Such data are called time symmetric since for them
hi j is momentarily static as seen from (6.29). This implies that the evolution of
such data into the future and into the past will coincide so that the developed
spacetime will have a time-reversal symmetry which pointwise fixes the initial
surface where Kij = 0. This surface is therefore also called the moment of time
symmetry. Time-symmetric data can still represent configurations of any number
of black holes without angular momenta which are momentarily at rest. Note
also that for time-symmetric data, condition (6.32) for an apparent horizon is
equivalent to the tracelessness of the extrinsic curvature of σ . Hence for time-
symmetric data apparent horizons are minimal surfaces.

We add one more general comment concerning submanifolds. A vanishing
extrinsic curvature is equivalent to the property that each geodesic of the
ambient space, which starts on, and tangent to the submanifold, will always run
entirely inside the submanifold. Therefore, submanifolds with vanishing extrinsic
curvature are called totally geodesic. Now, if the ambient space allows for an
isometry (symmetry of the metric), whose fixed-point set is the submanifold in
question, as for the time-reversal transformation just discussed, the submanifold
must necessarily be totally geodesic. To see this, consider a geodesic of the
ambient space which starts on, and tangent to the submanifold. Assume that this
geodesic eventually leaves the submanifold. Then its image under the isometry
would again be a geodesic (since isometries always map geodesics to geodesics)
which is different from the one from which we started. But this is impossible
since they share the same initial conditions which are known to determine the
geodesic uniquely. Hence the geodesic cannot leave the submanifold, which
proves the claim. We will later have more opportunities to identify totally
geodesic submanifolds—namely apparent horizons—by their property of being
fixed-point sets of isometries.
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6.5.4 Solution strategy for maximal data

Possibly the most popular approach to solving the constraints is the conformal
technique due to York et al (see [35] for a review). The basic idea is to regard
the Hamiltonian constraint (6.30) as an equation for the conformal factor of the
metric hi j and freely specify the complementary information, called the conformal
equivalence class of hi j . More concretely, this works as follows:

(1) Choose unphysical (‘hatted’) quantities (ĥi j , K̂i j ), where ĥi j is a
Riemannian metric on � and K̂i j is symmetric, trace and divergence free:

ĥi j K̂i j = 0 D̂i K̂i j = 0 (6.38)

where D̂ is the covariant derivative with respect to ĥi j .
(2) Solve the (quasilinear elliptic) equation for a positive, real valued function

 with boundary condition (r →∞)→ 1, where �̂ = ĥi j D̂i D̂ j :

�̂ + 1
8 K̂ i j K̂i j 

−7 = 0. (6.39)

(3) Using the solution of (6.39), define physical (‘unhatted’) quantities by

hi j =  4ĥi j (6.40)

Kij =  −2 K̂i j . (6.41)

These will satisfy the constraints (6.30), (6.31)!

6.5.5 Explicit time-symmetric data

Before we say a little more about maximal data, we wish to present some of
the most popular examples for time-symmetric data some of which are also
extensively used in numerical simulations. Hopefully these examples let you
gain some intuition into the geometries and topologies involved and also let you
anticipate the richness that a variable space structure gives to the solution space
of one of the simplest equations in physics: the Laplace equation.

Restricting the solution strategy, outlined earlier, to the time-symmetric case,
one first observes that for Kij = 0 one has K̂i j = 0. The momentum constraint
(6.31) is automatically satisfied and all that remains is equation (6.39), which
now simply becomes the Laplace equation for the single scalar function on the
Riemannian manifold (�, ĥi j ).

We now make a further simplifying assumption, namely that ĥi j is, in fact,
the flat metric. This will restrict our solution hi j to a conformally flat geometry.
It is not obvious how severe the loss of physically interesting solutions is by
restricting ourselves to conformally flat metrics. But we will see that the latter
already contain many interesting and relevant examples.

So let us solve Laplace’s equation in flat space! Remember that  must be
positive and approach one at spatial infinity (asymptotic flatness). We cannot
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take � = �
3 since the only solution to the Laplace equation in �

3 which
asymptotically approaches one is identically one. We must allow  to blow up
at some points, which we can then remove from the manifold. In this way we
let the solution tell us what topology to choose in order to have an everywhere
regular solution. You might think that just removing singular points would be
rather cheating, since the resulting manifold may turn out to be incomplete, that
is, can be hit by a curve after finite proper length (you can go ‘there’), even though
 and hence the physical metric blows up at this point. If this were the case, one
would definitely have to say what a solution on the completion would be. But, as
a matter of fact, this cannot happen and the punctured space will turn out to be
complete in terms of the physical metric.

6.5.5.1 One black hole

The simplest solution with one puncture (at r = 0) is just

 (r, θ, ϕ) = 1+ a

r
(6.42)

where a is a constant which we soon interpret and which must be positive in order
for  to be positive everywhere. We cannot have other multipole contributions
since they inevitably would force  to be negative somewhere. What is the
geometry of this solution? The physical metric is

ds2 =
(

1+ a

r

)4
(dr2 + r2 dθ2 + sin2 θ dϕ2) (6.43)

which is easily checked to be invariant under the inversion transformation on the
sphere r = a:

r → a2

r
θ → θ ϕ→ ϕ. (6.44)

This means that the region r > a just looks like the region r < a and that the
sphere r = a has the smallest area among all spheres of constant radius. It is a
minimal surface, in fact even a totally geodesic submanifold, since it is the fixed
point set of the isometry (6.44). Hence it is an apparent horizon, whose area
follows from (6.43):

A = 16π(2a)2. (6.45)

Our manifold thus corresponds to a black hole (figure 6.1). Its mass can easily be
computed from (6.35); one finds m = 2a. This manifold has two ends, one for
r → ∞ and one for r → 0. They have the same geometry and hence the same
ADM mass, as must be the case since individual and total mass clearly coincide
for a single hole.

The data just written down correspond to the ‘middle’ slice right across the
Kruskal (maximally extended Schwarzschild) manifold. Also, (6.43) is just the
spatial part of the Schwarzschild metric in isotropic coordinates. Hence we know
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Figure 6.1. One black hole.

its entire future development in analytic form. Already for two holes this is no
longer the case. Even the simplest two-body problem—head-on collision—has
not been solved analytically in GR.

6.5.5.2 Two black holes

There is an obvious generalization of (6.42) by allowing two ‘monopoles’ of
strength a1 and a2 at the punctures �x = �x1 and �x = �x2 respectively. The three-
metric then reads:

ds2 =
(

1+ a1

|�x − �x1| +
a2

|�x − �x2|
)4

(dr2 + r2 dθ2 + sin2 θ dϕ2). (6.46)

The manifold has now three asymptotically flat ends, one for |�x | → ∞, where
the overall ADM mass M is measured, and one each for |�x − �x1,2| → 0. To
see the latter, it is best to write the metric (6.46) in spherical polar coordinates
(r1, θ1, ϕ1) centered at �x1, and then introduce the inverted radial coordinate given
by r̄1 = a2

1/r1. In the limit r̄1 →∞, the metric then takes the form

ds2 =
(

1+ a1(1+ a2/r12)

r̄1
+ O((1/r̄1)

2)

)4

(dr̄2 + r̄2(dθ2
1 + sin2 θ1dϕ2

1))

(6.47)
where r12 = |�x1 − �x2|. This looks just like a one-hole metric (6.43). Hence, if
the black holes are well separated (compared to their size), the two-hole geometry
looks like that depicted in figure 6.2. By comparison with the one-hole metric,
we can immediately write down the ADM masses corresponding to the three ends
r, r̄1,2 →∞ respectively:

M = 2(a1 + a2) m1,2 = 2a1,2(1+ χ1,2) where χ1,2 = a2,1

r12
.

(6.48)

Momenta and angular momenta clearly vanish (moment of time symmetry). Still
assuming well-separated holes, i.e. χi = ai/r12 � 1, we can calculate the
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Figure 6.2. Two black holes well separated.

binding energy �E = M − m1 − m2 as a function of the masses mi and r12
and get

�E = −m1m2

r12

(
1− m1 + m2

2r12
+ O((m1,2/r12)

2)

)
. (6.49)

The leading order is just the Newtonian expression for the binding energy of two
point particles with masses m1,2 at distance r12. But there are corrections to this
Newtonian form which tend to diminish the Newtonian value. Note also that
(6.49) is still not in a good form since r12 is not an invariantly defined geometric
distance measure. As such one might use the length ! of the shortest geodesic
joining the two apparent horizons S1 and S2. Unfortunately these horizons are
not easy to locate analytically and hence no closed form of !(m1,m2, r12) exists
which could be inverted to eliminate r12 in favour of !.

Due to the difficulty of locating the two apparent horizons analytically, we
also cannot write down an analytic expression for their area. But we can give
upper and lower bounds as follows:

16π(2ai)
2 < Ai < 16π[(2ai(1+ χi )]2 = 16πm2

i . (6.50)

The lower bound simply follows from the fact that the two-hole metric (6.46), if
written down in terms of spherical polar coordinates about any of its punctures,
equals the one-hole metric (6.43) plus a positive definite correction. The upper
bound follows from the so-called Penrose inequality in Riemannian geometry
(proven in [27]), which directly states that 16πm2 ≥ A for each asymptotically
flat end, where m is the mass according to (6.35) and A is the area of the outermost
(as seen from that end) minimal surface.

If the two holes approach each other to within a distance comparable to the
sizes of the holes, the geometry changes in an essential way. This is shown in
figure 6.3. The most important new feature is that new minimal surfaces form, in
fact two [10], which both enclose the two holes. The outermost of these, as seen
from the upper end, denoted by S3 in figure 6.3, corresponds to the apparent
horizon of the newly formed ‘compound’ black hole which contains the two
old ones. For two black holes of equal mass, i.e. a1 = a2 = a, this happens
approximately for a parameter ratio of a/r12 = 0.65 which, in an approximate
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Figure 6.3. Two black holes after merging.

numerical translation into the ratio of individual hole mass to geodesic separation,
reads m/! ≈ 0.26.

6.5.5.3 More than two black holes

The method can be generalized in a straightforward manner to any number n of
black holes with parameters (ai , �xi ), i = 1, . . . n, for the punctures. The manifold
� has now n+1 ends, one for |�x | → ∞ and one for each �x → �xi . The expressions
for the metric and masses are then given by the obvious generalizations of (6.46)
and (6.48), respectively.

6.5.5.4 Energy bounds from Hawking’s area law

Loosely speaking, Hawking’s area law states that the surface of a black hole
cannot decrease with time. (See [23] for a simple and complete outline of the
traditional and technically slightly restricted version and [9] for the technically
most complete proof known today.) Let us briefly explain this statement. If
� is a Cauchy surface (a spacelike hypersurface in spacetime) and � the event
horizon (a lightlike hypersurface in spacetime), the two intersect in a number of
components (spacelike two-manifolds), each of which we assume to be a two-
sphere. Each such two-sphere is called the surface of a black hole at time �.
Let us pick one of them and call it B . Consider next a second Cauchy surface �′
which lies to the future of�. The outgoing null rays of B intersect�′ in a surface
B ′, and the statement is now that the area of B ′ is larger than or equal to the area
of B (to prove this one must assume the strong energy condition). Note that we
deliberately left open the possibility that B ′ might be a proper subset of a black
hole surface at time�′, in case the original hole has merged in the meantime with
another one. If this does not happen B ′ may be called the surface of the same
black hole at the later time �.

Following an idea of Hawking’s [24], this can be applied to the future
evolution of multi black hole data as follows. As we have already mentioned,
the event horizon lies on or outside the apparent horizon. Hence the area of
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the ‘surface’ (as just defined) of a black hole is bounded below by the area
of the corresponding apparent horizon, which in turn has the lower bound
stated in (6.50). Suppose that, after a long time, our configuration settles
into an approximately stationary state, at least for some interior region where
gravitational radiation is no longer emitted. Since our data have zero linear
and angular momentum, the final state is static and uniquely given by a single
Schwarzschild hole of some final mass Mfinal and corresponding surface area
Afinal = 16πM2

final. This is a direct consequence of known black hole uniqueness
theorems (see [26] or [25, pp 157–86] for a summary). By the area theorem
Afinal is not less than the sum of all initial apparent horizon surface areas. This
immediately gives

Mfinal ≥
√∑

i

Ainitial
i /16π ≥ 2

√√√√ n∑
i

a2
i . (6.51)

In passing we remark that applied to a single black hole this argument shows
that it cannot lose its mass below the value mir :=

√
Ainitial/16π , called its

irreducible mass. Back to the multi-hole case, the total initial mass is given by
the straightforward generalization of (6.48):

Minitial =
∑

i

mi = 2
∑

i

ai (1+ χi ) where χi =
∑
i �=k

ak

|�xi − �xk | . (6.52)

By using these two equations, we can write down a lower bound for the fractional
energy loss into gravitational radiation:

�M

M
:= Minitial − Mfinal

Minitial
≤ 1−

√∑
i a2

i∑
i ai (1+ χi )

. (6.53)

For a collision of n initially widely separated (χi → 0) holes of equal mass this
becomes

�M

M
= 1−√

1/n. (6.54)

For just two holes this means that at most 29% of their total rest mass can be
radiated away. But this efficiency can be enhanced if the energy is distributed
over a larger number of black holes.

Another way to raise the upper bound for the efficiency is to consider
spinning black holes. For two holes the maximal value of 50% can be derived
by starting with two extremal black holes (i.e. of maximal angular momentum:
J = m2 in geometric units) which merge to form a single unspinning black
hole [24].

One can also envisage a situation where one hole participates in a scattering
process but does not merge. Rather it gets kicked out of the collision zone and
settles without spin (for simplicity) in a quasistationary state (for some time) far
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apart. The question is what fraction of energy the area theorem allows it to lose.
Let this be the kth hole. Then mfinal

k ≥ 2ak = minitial
k /(1+ χk). Hence

minitial
k − mfinal

k

minitial
k

≤ χk

1+ χk
< 1 (6.55)

showing that an appreciable efficiency can only be obtained if the data are such
that χk is not too close to zero. This means that the kth hole was originally not
too far from the others. This seems an unlikely process. Hence it is difficult to
extract energy from a single unspinning hole.

For a single spinning black hole the situation is again different. Spinning it
down from an extreme state to zero angular momentum sets an upper bound for
the efficiency from the area law of 29%. This follows easily from the following
relation between mass, irreducible mass, and angular momentum for a Kerr black
hole (see e.g., formula (33.60)) [32]:

m2 = m2
ir + J 2/4m2

ir. (6.56)

Setting J = m2, one solves for mir/m = √
1/2; hence (m − mir)/m =

1 − √1/2 ≈ 0.29. It can, moreover, be shown [8] that this limit can be
(theoretically) realized by the Penrose process (compare with chapter 5).

Needless to say, realistic processes may be far less efficient than this
theoretical bound from the area law alone indicates. Recent numerical studies
of the head-on (i.e. zero angular momentum) collision of two equal-mass black
holes give a radiated energy in units of the total energy of only 10−3 [3]. With
angular momentum the efficiency is, of course, expected to be much better. Here
recent numerical investigations give an estimate of 3 × 10−2 for an inspiralling
of two equal-mass non-spinning black holes from the innermost stable circular
orbit [2]: still a long way from the theoretical upper bound.

6.5.5.5 Other topologies

Other topologies can be found which support initial data with apparent horizons.
For example, instead of the ‘Schwarzschild’ manifold with n+ 1 ends for n black
holes (figure 6.4), one can find one which has just two ends for any number
≥ 2 of holes and which has been termed the Einstein–Rosen manifold [29]
(figure 6.5). The difference from the data already discussed does not primarily lie
in the physics they represent. After all their different topologies are hidden behind
event horizons for the outside observer, even though their interaction energies are
slightly different [20, 22]. However, the point we wish to stress here is that such
data can analytically and numerically be more convenient, despite the fact that the
underlying manifold might seem topologically more complicated. The reason is
that these data have more symmetries and that coordinate systems can be found
for which these symmetries take simple analytic expressions. For example, in
the Einstein–Rosen manifold the upper and lower ends are isometrically related
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Figure 6.4. Multi-Schwarzschild.

Figure 6.5. Einstein–Rosen manifold.

by reflections about the minimal two-spheres in each connecting tube, with the
fixed-point sets being the apparent horizons. Hence all the apparent horizons
can be easily located analytically in the multi-hole Einstein–Rosen manifold, in
contrast to the multi-hole Schwarzschild manifold.

Let us briefly explain this for two holes of equal mass. Here one starts
again from �

3 coordinatized by spherical bipolar coordinates. These are obtained
from bipolar coordinates (µ, η) in the xz-plane by adding an azimuthal angle
ϕ corresponding to a rotation about the z-axis, just as ordinary spherical polar
coordinates are produced from ordinary polar coordinates in the xz-plane. The
coordinates (µ, η) parametrize the xz-plane according to exp(µ − iη) = (ξ +
c)/(ξ − c), where ξ = z + i x and c > 0 is a constant (figure 6.6). The lines
of constant µ intersect those of constant η orthogonally. Both families consist of
circles; those in the first family are centered on the z-axis with radii c/ sinhµ at
z = c cothµ, and those in the second family on the x-axis with radii c/| sin η| at
|x | = c cotη.

Following an idea of Misner’s [31], one can borrow the method of images
from electrostatics (see, e.g., chapter 2.1 in [28]) in order to construct solutions
 to the Laplace equation such that the metric hi j =  4δi j has a number of
reflection isometries about two-spheres, one for each hole. In the two-hole case,
one uses the two two-spheres µ = ±µ0 for some µ0 > 0, which then become
the apparent horizons. By using these isometries, we can take two copies of our
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Figure 6.6. Bipolar coordinates.

initial manifold, excise the balls |µ| > µ0 and glue the two remaining parts ‘back
to back’ along the two boundaries µ = µ0 and µ = −µ0. The isometry property
is necessary so that the metric continues to be smooth across the seam. This gives
an Einstein–Rosen manifold with two tubes (or ‘bridges’, as they are sometimes
called) connecting two asymptotically flat regions.

In fact, we could have just taken one copy of the original manifold,
excised the balls |µ| > µ0, and mutually glued together the two boundaries
µ = ±µ0. This also gives a smooth metric across the seam and results in
a manifold known as the Misner wormhole [30] (figure 6.7). Metrically the
Misner wormhole is locally isometric to the Einstein–Rosen manifold with two
tubes (which is its ‘double cover’), but their topologies obviously differ. This
means that for the observer outside the apparent horizons, these two data sets are
indistinguishable. This is not quite true for the Einstein–Rosen and Schwarzschild
data, which are not locally isometric. Even without exploring the region inside the
horizons (which anyway is rendered impossible by existing results on topological
censorship [16]) they slightly differ in their interaction energy and other geometric
quantities, e.g. the tidal deformation of the apparent horizons.

The two parameters c and µ0 now label the two-hole configurations of
equal mass. (In the Schwarzschild case the two independent parameters were
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Figure 6.7. The Misner wormhole representing two black holes.

a ≡ a1 = a2 and r12 ≡ |�x1 − �x2|.) But unlike the Schwarzschild case, we can
now give closed analytic expressions not only for the total mass M and individual
mass m in terms of the two parameters, but also for the geodesic distance of the
apparent horizons !. (! is used as the definition for the ‘instantaneous distance of
the two black holes’; for the Misner wormhole, where the two apparent horizons
are identified, this corresponds to the length of the shortest geodesic winding once
around the wormhole.) These read:

M = 4c
∞∑

n=1

1

sinh nµ0
m = 2c

∞∑
n=1

n

sinh nµ0
! = 2c(1+2mµ0). (6.57)

You might rightly wonder what ‘individual mass’ should be if there is no internal
end associated with each black hole where the ADM formula (6.35) can be
applied. The answer is that there are alternative definitions of ‘quasi-local mass’
which can be applied even without asymptotic ends. The one we previously
used for the expression of m is due to Lindquist [29] and is easy to compute
in connection with the method of images but it lacks a deeper mathematical
foundation. An alternative which is mathematically better founded is due to
Penrose [34], which, however, is much harder to calculate and only applies to a
limited set of situations (it agrees with the ADM mass whenever both definitions
apply). Amongst them are, however, all time-symmetric conformally flat data,
and for data above the Penrose mass has fortunately been calculated in [36]. The
expression for m is rather complicated and differs from that given here. The
difference is only of sixth order in an expansion in (mass/distance), though [20].

In summary, we see that the problem of setting up initial data for two
black holes of given individual mass and given separation has no unique answer.
Metrically as well as topologically different data sets can be found which have
the same right to be called a realization of such a configuration. For holes without
associated asymptotically flat ends no unambiguous definition for a quasi-local
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mass exists.

6.5.6 Non-time-symmetric data

According to a prescription found by Bowen and York [35], we can add linear
and angular momentum within the setting of maximal data. We can still use
conformally flat data, i.e. set ĥi j = δi j , on multiply punctured �3 . Then the
following two expressions add linear momentum Pi and spin angular momentum
Si to the puncture �x = �0:

K̂ i j
P =

3

2r2 (P
i n j + P j ni − (δi j − ni n j )( �P · �n)) (6.58)

K̂ i j
S = 3

r3
((�S × �n)i n j + (�S × �n) j ni ). (6.59)

It is straightforward to check that these expressions satisfy (6.38) (note that
D̂i = ∂i ). One can also check that these data will, indeed, give the proposed
momenta and angular momenta at infinity (i.e. at the end r → ∞). For this one
may just use the ‘hatted’ quantities in (6.36) and (6.37), since the rescaling (6.41)
does not influence the leading-order parts in the 1/r expansion of K , which alone
contribute to these integrals. Linearity of all these equations in K allows us to
just add K P and KS and get initial data for one black hole with given momentum
�P and (spin) angular momentum �S. Moreover, we can add any finite number

of expressions of the kind (6.58) and (6.59) with parameters �Pi , �Si based at the
puncture �xi , where i = 1, . . . , n. This then leads to a data set whose total linear
and angular momentum is given by the sum

∑
i
�Pi and

∑
i
�Si respectively. But

one may not immediately conclude that the �Pi and �Si are linear and angular
momenta of the individual black holes. Rather, the latter must be calculated for
the internal ends of the manifold and for this one needs to know . The task then
remains to solve (6.39) for the conformal factor, with blow-ups being allowed at
the given punctures.

One interesting idea to facilitate solving (6.39) is first to split off the singular
part of  , which blows up at the punctures {�x1, . . . , �xn} as 1/|�x − �xi |, from the
regular remainder [6] (compare also [5]). One writes

 = 1

α
+U with

1

α
:=

n∑
i=n

ai

|�x − �xi | (6.60)

where the ai > 0 may be freely prescribed. Inserting this into (6.39) gives

�U + β(1+ αU)−7 = 0 with β = 1
8α

7 K ij Ki j . (6.61)

The point is now the following: for �x → �xi the function α tends to zero as
|�x − �xi |; hence β, too, tends to zero as |�x − �xi |. This means that (6.61) has
continuous coefficients everywhere in �3 since the 1/|�x − �xi |6 singularity at �xi
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of the K -squared term is cancelled by multiplication with α7. (Note that this
relies on using the K from (6.58), (6.59), which possess no 1/rn terms with
n > 3.) This means that equation (6.61) for U can be solved on all of �3 ,
without the need to excise the points {�x1, . . . , �xn} and therefore without the need
to specify ‘inner’ boundary conditions for U ; only the ‘outer’ boundary condition
U(r → ∞) → 1 remains. This simplification seems particularly useful in
numerical implementations (compare [6]).

The total mass of our configuration is M = ∑
i 2ai . The individual

masses are determined just as in section 6.5.5.2 by introducing the inverted radial
coordinate r̄i = a2

i /ri and reading off the coefficient from the 1/2r̄i term in the
r̄i →∞ expansion. One easily gets

mi = 2ai(U(�xi )+ χi ) (6.62)

with χi as in (6.52).
The linear and angular momenta at, say, the kth end can also be calculated

by using inverted coordinates, given by �̄x = (�x − �xk)a2
k/r

2
k . Expressed in

these coordinates, the ‘hatted’ (unphysical) extrinsic curvature tensor is given

by J i
k J j

l K̂i j where J i
k := ∂xi

∂ x̄ k = (a2
k/r̄

2)Ri
k with Ri

k = δi
k − 2ni nk , which

is an orthogonal matrix. The ‘physical’ extrinsic curvature is then obtained by
multiplication with  −2 (compare with (6.41)). Now,

 (�̄x) = r̄

ak

(
1+ mk

2r̄
+ O((1/r̄)2)

)
so that

K̄i j =
{(ak

r̄

)6 + terms ∝
(ak

r̄

)p
}
(Rk

i Rl
j K̂kl ) where p ≥ 7. (6.63)

Inserting the expression (6.58) for K̂ P results in a 1/r̄4 fall-off so that the
individual linear momenta are all zero as measured from the internal ends. One
may say that the asymptotically flat internal ends represent the local rest frames
of the black holes. Note that these rest frames are inertial since each black
hole is freely falling. Inserting KS from (6.59) gives a 1/r̄3 fall-off and an
angular momentum which is just −�Sk for the kth end. (Here one uses that Ri

k
is orientation-reversing orthogonal, hence changing the sign of εi j k , and that
Ri

k(
�S × �n)k = −(�S × �n)i .)

6.6 Problems and recent developments

In this final section we draw attention to some of the current problems and
developments, without claiming completeness.

(1) Given black hole data for n holes of fixed masses and mutual separations
(whatever definitions one uses here), one would like to minimize these
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data on the amount of outgoing radiation energy. Any excess over the
minimal amount can be said to be ‘already contained’ initially. But so
far no local (in time) criterion is known which quantifies the amount of
gravitational radiation in an initial data set. First hints at the possibility that
some (Newman–Penrose) conserved quantities could be useful here were
discussed in [13].

(2) Restricting ourselves to spatially conformally flat metrics seems to be too
narrow. It has been shown that there are no conformally flat spatial slices
in Kerr spacetime which are axisymmetric and reduce to slices of constant
Schwarzschild time in the limit of vanishing angular momentum [18].
Accordingly, Bowen–York data, even for a single black hole, contain excess
gravitational radiation due to the relaxation of the individual holes to Kerr
form [19]; see also [33] for an informal discussion of this and related
problems. An alternative to the Bowen–York data, which describe two
spinning black holes and which reduce to Kerr data if the mass of one hole
goes to zero, have been discussed in [12].

(3) Even for the simplest two-hole data (Schwarzschild or Einstein–Rosen)
it is not known whether the evolving spacetime will have a suitably
smooth asymptotic structure at future-lightlike infinity (i.e. ‘scri-plus’). As
a consequence, we still do not know whether we can give a rigorous
mathematical meaning to the notion of ‘energy loss by gravitational
radiation’ in this case of the simplest head-on collision of two black holes!
The difficult analytical problems involved are studied in the framework of
the so-called ‘conformal field equations’, see [17] (in particular section 4)
for a summary and references.

(4) We usually like to ask ‘Newtonian’ questions, like: given two black holes
of individual masses m1,2 and mutual separation !, what is their binding
energy? For such a question to make sense, we need good concepts of quasi-
local mass and distance. But these are ambiguous concepts in GR. Different
definitions of ‘quasi-local mass’ and ‘distance’ amount to differences in the
calculated binding energies which can be a few 10−3 times total energy at
closest encounter [20]. This is of the same order of magnitude as the total
energy lost into gravitational radiation found in [3] for the head-on (i.e. zero
angular momentum) collision of two black holes modelled with Misner data.

6.7 Appendix: equation (6.2) satisfies the energy principle

By the ‘energy principle’ we understand the property that all energy of the self-
gravitating system serves as source for the gravitational field. In this appendix,
we wish to prove that (6.2) indeed satisfies this principle. For the uniqueness
argument see [21].

Given a matter distribution ρ immersed in its own gravitational potential
φ, suppose we redistribute the matter within a bounded region of space by
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actively dragging it along the flow lines of a vector field �ξ which vanishes outside
some bounded region. The rate of change, δρ, of the matter distribution is then
determined through δρ dV = −L �ξ (ρ dV ) = −�∇ · (�ξρ) dV , where L �ξ is the Lie

derivative with respect to �ξ and dV is the standard spatial volume element. Note
that the latter also needs to be differentiated along �ξ , resulting in L �ξ dV = �∇ · �ξ .

Hence we have δρ = −�∇ · (�ξρ). The rate of work done to the system during this
process is

δA =
∫
�3

dV ρ�ξ · �∇φ = −
∫
�3

dV φ �∇ · (�ξρ) =
∫
�3

dV φδρ (6.64)

where the integration by parts does not lead to surface terms due to �ξ vanishing
outside a bounded region. Equation (6.64) is still completely general, that is,
independent of the field equation for φ. The field equation comes in when
we assume that the process of redistribution is carried out adiabatically, which
means that at each stage during the process φ satisfies its field equation with
the instantaneous matter distribution. Our claim will be proven if under the
hypothesis that φ satisfies (6.2) we can show that δA = c2δMG, where MG is
defined in (6.5) and represents the total gravitating energy according to the field
equation. Setting

√
φ/c2 = ψ and using the more convenient equation (6.3), we

have

δA = c4

2πG

∫
�3

dV ψ2δ

[
�ψ

ψ

]
= c4

2πG

∫
�3

dV [ψ�(δψ) − (�ψ)δψ]

= c4

2πG
lim

r→∞

∫
S2(r)

dσ �n · [ψ �∇(δψ)− ( �∇ψ)δψ]. (6.65)

Now, the fall-off condition for r → ∞ implies that �∇ψ falls off as fast as 1/r2

and δψ as 1/r . Hence the second term in the last line of (6.65) does not contribute
so that we may reverse its sign. This leads to

δA = c4

2πG
δ lim

r→∞

∫
S2(r)

dσ (�n · �∇ψ)ψ = c4

4πG
δ lim

r→∞

∫
S2(r)

dσ �n · �∇φ

= c2δMG (6.66)

which proves the claim.
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Chapter 7

Quantum aspects of black holes

Claus Kiefer
University of Cologne, Germany

In this chapter, a brief introduction is given to the quantum aspects of black
holes. It is an important fact that black holes obey laws analogous to the laws
of thermodynamics. Taking quantum theory into account, it becomes clear that
black holes do in fact emit thermal radiation (‘Hawking radiation’) and possess
an entropy. The physical meaning of Hawking temperature and black hole entropy
is discussed in detail. These effects can only be observed if primordial black holes
(relics from the early Universe) exist. The chapter therefore ends with a brief
review of the current observational constraints on their existence.

7.1 Introduction

At the most fundamental level, black holes are genuine quantum objects. This
holds irrespectively of the fact that direct quantum effects can only be observed
for small black holes—black holes that cannot be formed by stellar collapse. For
this reason the discussion in this chapter will be more theoretical in nature. But
even a black hole as gigantic as the Galactic black hole will in the far future (if
the Universe does not recollapse) be dominated by quantum effects and eventually
evaporate. It is, however, possible that small black holes have been created in the
very early Universe. For such primordial black holes quantum effects can be of
direct observational significance in the present Universe. I shall thus devote my
last section to a brief discussion of their relevance. In the first three sections
I shall, however, give an introduction to the key theoretical developments—
black hole mechanics, Hawking radiation, and the interpretation of the black hole
entropy.

In my discussion I shall draw heavily from my review article (Kiefer 1999)
where many technical details can be found. Other general references include
the comprehensive book by Frolov and Novikov (1998), Wald (2001), Hehl et
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al (1998), as well as the article by Bekenstein (1980) and the book by Thorne
(1994).

7.2 The laws of black hole mechanics

It is a most amazing fact that black holes obey uniqueness theorems (Heusler
1996). If an object collapses to form a black hole, a stationary state is reached
asymptotically. One can prove within Einstein–Maxwell theory that stationary
black holes are uniquely characterized by only three parameters: mass M , angular
momentum J ≡ Ma, and electric charge q . In this sense, black holes are objects
much simpler than ordinary stars—given these parameters, they all look the same.
All other degrees of freedom that might have been initially present have thus
been radiated away, e.g. in the form of electromagnetic or gravitational radiation,
during the collapse. Since the latter constitute some form of ‘hair’, one refers to
the content of these theorems as black holes have no hair. The three parameters
are associated with conservation laws at spatial infinity. In principle, one can thus
decide about the nature of a black hole far away from the hole itself, without
having to approach it. In astrophysical situations, the two parameters M and
J suffice, since a charged object would rapidly discharge. The corresponding
solution of Einstein’s equations is called the Kerr solution (Kerr–Newman in the
presence of charge). Stationary black holes are axially symmetric, with spherical
symmetry being obtained as a special case for J = 0.

In the presence of other fields, the uniqueness theorems do not always hold,
see, for example, Núñez et al (1998). This is, in particular, the case in the presence
of non-Abelian gauge fields. In addition to charges at infinity, such ‘coloured
black holes’ have to be characterized by additional variables, and it is necessary
to approach the hole to determine them. The physical reason for the occurrence
of such solutions is the nonlinear character of these gauge fields. Fields in regions
closer to the black hole (that would otherwise be swallowed by the hole) are tied
to fields far away from the hole (that would otherwise be radiated away) to reach
an equilibrium situation. In most examples this equilibrium is, however, unstable
and the corresponding black hole solution does not represent a physical solution.
Since classical non-Abelian fields have never been observed (the description of
objects such as quarks necessarily needs quantized gauge fields which, due to
confinement, have no macroscopic limits), they will not be taken into account in
the subsequent discussion.

In 1971, Stephen Hawking could prove an important theorem about
stationary black holes—that their area can never decrease with time. More
precisely, he showed that

For a predictable black hole satisfying Rabkakb ≥ 0 for all null ka , the
surface area of the future event horizon never decreases with time.

A ‘predictable’ black hole is one for which the cosmic censorship hypothesis
holds—this is thus a major assumption for the area law. Cosmic censorship
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states that all black holes occurring in nature have an event horizon, so that
the singularity cannot be observed for far-away observers (the singularity is not
‘naked’). I emphasize that the time asymmetry in this theorem comes into play
because a statement is made about the future horizon, not the past horizon; an
analogous statement for white holes would then be that the past event horizon
never increases. I also emphasize that the area law only holds in classical theory,
not in quantum theory (see section 7.3).

The area law seems to exhibit a close formal analogy to the Second Law of
Thermodynamics—there the entropy can never decrease with time (for a closed
system). However, the conceptual difference could not be more pronounced:
while the Second Law is related to statistical behaviour, the area law is just a
theorem in differential geometry. That the area law is in fact directly related to
the Second Law will become clear in the course of this section.

Further support for this analogy is given by the existence of analogies to the
other laws of thermodynamics. The Zeroth Law states that there is a quantity, the
temperature, that is constant on a body in thermal equilibrium. Does there exist
an analogous quantity for a black hole? One can in fact prove that the surface
gravity κ is constant over the event horizon (Wald 1984). For a Kerr black hole,
κ is given by

κ =
√
(GM)2 − a2

2GMr+
a→0−→ 1

4GM
= GM

R2
0

(7.1)

where r+ denotes the location of the event horizon. One recognizes in the
Schwarzschild limit the well-known expression for the Newtonian gravitational
acceleration. (There R0 ≡ 2GM denotes the Schwarzschild radius.) One can
show for a static black hole that κ is the limiting force that must be exerted at
infinity to hold a unit test mass in place when approaching the horizon. This
justifies the name surface gravity.

With a tentative formal relation between surface gravity and temperature,
and between area and entropy, the question arises as to whether a First Law of
thermodynamics can be proved. This can in fact be done and the result for a
Kerr–Newman black hole is

dM = κ

8πG
dA +�H dJ + dq (7.2)

where A,�H , denote the area of the event horizon, the angular velocity of
the black hole, and the electrostatic potential, respectively. This relation can
be obtained by conceptually different methods: a physical process version in
which a stationary black hole is altered by infinitesimal physical processes, and an
equilibrium state version in which the areas of two stationary black hole solutions
to Einstein’s equations are compared. Both methods lead to the same result (7.2).

Since M is the energy of the black hole, (7.2) is the analogue of the First
Law of Thermodynamics given by

dE = T dS − p dV + µ dN. (7.3)
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Table 7.1. Analogy between the laws of thermodynamics and the laws of black-hole
mechanics.

Law Thermodynamics Stationary black holes

Zeroth T constant on a body κ constant on the
in thermal equilibrium horizon of a black hole

First dE = T dS − p dV + µ dN dM = κ
8πG dA +�H dJ + dq

Second dS ≥ 0 dA ≥ 0
Third T = 0 cannot be reached κ = 0 cannot be reached

‘Modern’ derivations of (7.2) make use of both Hamiltonian and Lagrangian
methods of general relativity. For example, the First Law follows from an
arbitrary diffeomorphism invariant theory of gravity whose field equations can
be derived from a Lagrangian.

What about the Third Law of Thermodynamics? A ‘physical process
version’ was proved by Israel—it is impossible to reach κ = 0 in a finite
number of steps, although it is unclear whether this is true under all circumstances
(Farrugia and Hajicek 1979). This corresponds to the ‘Nernst version’ of the Third
Law. The stronger ‘Planck version’, which states that the entropy goes to zero (or
a material-dependent constant) if the temperature approaches zero, does not seem
to hold. The analogies are summarized in table 7.1.

The identification of the horizon area with the entropy for a black hole can be
obtained from a conceptually different point of view. If a box with, say, thermal
radiation of entropy S is thrown into the black hole, it seems as if the Second Law
could be violated, since the black hole is characterized only by mass, angular
momentum, and charge, but nothing else. The demonstration that the Second
Law is fulfilled leads immediately to the concept of a black hole entropy, as will
now be discussed (Bekenstein 1980, Sexl and Urbantke 1983).

Consider a box with thermal radiation of mass m and temperature T lowered
from a spaceship far away from a spherically symmetric black hole towards the
hole (figure 7.1). As an idealization, both the rope and the walls are assumed to
have negligible mass. At a coordinate distance r from the black hole, the energy
of the box is given by

Er = m

√
1− 2GM

r
r→R0−→ 0. (7.4)

If the box is lowered down to the horizon, the energy gain is thus given by m.
The box is then opened and thermal radiation of mass δm escapes into the hole. If
the box is then closed and brought back again to the spaceship, the energy loss is
m − δm. In total the energy δm of the thermal radiation can be transformed into
work with an efficiency of η = 1 . This looks as if one possessed a perpetuum
mobile of the second kind.
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r 

T >> TBH

with mass M

(nonrotating) 
black hole

Figure 7.1. Thought experiment to demonstrate the Second Law of Thermodynamics for
black holes.

The key to the resolution of this apparent paradox lies in the observation that
the box must be big enough to contain the wavelength of the enclosed radiation.
This, in turn, leads to a lower limit on the distance to which the box can approach
the horizon. Therefore, only part of δm can be transformed into work, as I shall
show now.

According to Wien’s law, one must have a linear extension of the box of at
least

λmax ≈ �

kBT
(7.5)

where kB denotes Boltzmann’s constant. I emphasize at this stage that Planck’s
constant � comes into play. The box can then be lowered down to the coordinate
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distance δr (assumed to be� 2GM) from the black hole where, according to the
Schwarzschild metric, the relation between δr and λmax is

λmax ≈
∫ 2G M+δr

2G M

(
1− 2GM

r

)− 1
2

dr ≈ 2
√

2GMδr  ⇒ δr ≈ λ2
max

8GM
.

According to (7.4), the energy of the box at r = 2GM + δr is

E2G M+δr = m

√
1− 2GM

2GM + δr ≈
mλmax

4GM
≈ m�

4GkBT M
.

Recalling that, according to (7.2), the formal temperature of the black hole,
TBH, is proportional to the surface gravity κ = 1/(4GM), the energy of the box
before opening is

E (before)
2G M+δr ≈ m

TBH

T
while after opening it is

E (after)
2G M+δr ≈ (m − δm)

TBH

T
.

The efficiency of transforming thermal radiation into work is thus given by

η ≈
(
δm − δm TBH

T

)/
δm = 1− TBH

T
< 1

which is the well-known Carnot limit for the efficiency of heat engines. From
the First Law (7.2) one then finds for the entropy of the black hole SBH ∝ A =
16π(GM)2. It is this agreement of conceptually different approaches to black
hole thermodynamics that gives us confidence in the physical meaning of these
concepts. In the next section I shall show how all these formal results can be
physically interpreted in the context of quantum theory.

7.3 Hawking radiation

We have already seen in the thought experiment discussed in the previous section
that � enters the scene, see (7.5). That Planck’s constant has to play a role can
also be seen from the First Law (7.2). Since TBH dSBH = κ/(8πG) dA, one must
have

TBH = κ

Gζ
SBH = ζ A

8π

with an undetermined factor ζ . What is the dimension of ζ ? Since SBH has the
dimension of Boltzmann’s constant kB, kB/ζ must have the dimension of a length
squared. There is, however, only one fundamental length available, the Planck
length

lP =
√

G� ≈ 10−33 cm. (7.6)
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IV

III

II
acceleration

horizon

I
X

T

    =
 const.

    = const.τ ρ

Figure 7.2. Uniformly accelerated observer in Minkowski space.

(For string theory, this may be replaced by the fundamental string length.)
Therefore,

TBH ∝ �κ

kB
SBH ∝ kB A

G�
. (7.7)

The precise factors in (7.7) were determined in a pioneering paper by Hawking
(1975). The key ingredient in his discussion is the behaviour of quantum fields
on the background of an object collapsing to form a black hole. Similar to the
situation of an external electric field (Schwinger effect), there is no uniquely
defined notion of a vacuum. This leads to the occurrence of particle creation.
The peculiarity of the black hole case is the thermal distribution of the particles
created.

There exists an analogous effect already in flat spacetime, discussed by
Unruh (1976), with earlier related work by Fulling (1973) and Davies (1975).
In the following I shall briefly describe this effect.

Whereas all inertial observers in Minkowski space agree on the notion
of vacuum (and therefore on particles), this no longer holds for non-inertial
observers. Consider an observer who is uniformly accelerating along the
X-direction in (1 + 1)-dimensional Minkowski spacetime (figure 7.2). The
Minkowski Cartesian coordinates are labelled here by upper-case letters. The
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orbit of this observer is the hyperbola shown in figure 7.2. One recognizes
that, as in the Kruskal diagram for the Schwarzschild metric, the observer
encounters a horizon (here an ‘acceleration horizon’). There is, however, no
singularity behind this horizon. Region I is a globally hyperbolic spacetime
on its own—the so-called Rindler spacetime. This spacetime can be described
by coordinates (τ, ρ) which are connected to the Cartesian coordinates via the
coordinate transformation (

T
X

)
= ρ

(
sinh aτ
cosh aτ

)
(7.8)

where a is a constant (the orbit in figure 7.2 describes an observer with
acceleration a, who has ρ = 1/a).

Since
ds2 = dT 2 − dX2 = a2ρ2 dτ 2 − dρ2 (7.9)

the orbits ρ = constant are also orbits of a timelike Killing field ∂/∂τ . It is
clear that τ corresponds to the external Schwarzschild coordinate t and that ρ
corresponds to r . As in the Kruskal case, ∂/∂τ becomes spacelike in regions II
and IV.

The analogy with Kruskal becomes even more transparent if the
Schwarzschild metric is expanded around the horizon at r = 2GM . Introducing
ρ2/(8GM) = r − 2GM and recalling (7.1), one has

ds2 ≈ κ2ρ2 dt2 − dρ2 − 1

4κ2
d�2. (7.10)

Comparison with (7.9) shows that the first two terms on the right-hand side of
(7.10) correspond exactly to the Rindler spacetime (7.9) with the acceleration a
replaced by the surface gravity κ . The last term1 in (7.10) describes a two-sphere
with radius (2κ)−1.

How does the accelerating observer experience the standard Minkowski
vacuum |0〉M ? The key point is that the vacuum is a global state correlating
regions I and III in figure 7.2 (similar to Einstein–Podolsky–Rosen correlations),
but that the accelerated observer is restricted to region I. Considering, for
simplicity, the case of a massless scalar field, the global vacuum state comprising
the regions I and II can be written in the form

|0〉M =
∏
ω

√
1− e−2πωa−1

∑
n

e−nπωa−1 |nI
ω〉 ⊗ |nII

ω〉 (7.11)

where |nI
ω〉 and |nII

ω〉 are n-particle states with frequency ω = |k| in regions I and
II, respectively. Expression (7.11) is an example of the Schmidt expansion of two

1 It is this term that is responsible for the non-vanishing curvature of (7.10) compared to the flat-space
metric (7.9) whose extension into the (neglected) other dimensions would be just −dY 2 − dZ2.



Hawking radiation 215

entangled quantum systems, see, e.g., Giulini et al (1996); note also the analogy
of (7.11) with a BCS state in the theory of superconductivity.

For an observer restricted to region I, state (7.11) cannot be distinguished, by
operators with support in I only, from a density matrix that is found from (7.11)
by tracing out all degrees of freedom in region II,

ρI ≡ TrII |0〉M 〈0|M
=
∏
ω

(1− e−2πωa−1
)
∑

n

e−2πnωa−1 |nI
ω〉〈nI

ω|. (7.12)

Note that the density matrix ρI has exactly the form corresponding to a thermal
canonical ensemble with temperature

TU = �a

2πkB
≈ 4× 10−23a

[cm

s2

]
K. (7.13)

An observer who is accelerating uniformly through Minkowski space thus sees a
thermal distribution of particles. This is an important manifestation of the non-
uniqueness of the vacuum state in quantum field theory, even for flat spacetime.
A more detailed discussion invoking models of particle detectors confirms this
result.

The ‘Unruh temperature’ (7.13), although being very small for most
accelerations, might be observable for electrons in storage rings where spin
precession is used as a ‘detector’ (Leinaas 2001). Due to the circular nature of the
accelerator, the spectrum of the observed particles is not then thermal. Since this
would complicate the direct comparison with the Hawking effect, other proposals
for measuring (7.13), for example by means of ultra-intense lasers (Chen and
Tajima 1999), also exist.

I shall now turn to the case of black holes. From the form of the line
element near the horizon, (7.10), one can already anticipate that—according to
the equivalence principle—a black hole radiates with a temperature as specified
in (7.13) with a being replaced by κ . This is, in fact, what Hawking (1975) found.
The temperature reads:

TBH = �κ

2πkB
. (7.14)

For the total luminosity of the black hole one finds

L = −dM

dt
= 1

2π

∞∑
l=0

(2l + 1)
∫ ∞

0
dωω

�ωl

e2ωπκ−1 − 1
. (7.15)

The term �ωl —called the ‘grey body factor’ because it encodes a deviation from
the black body spectrum—takes into account the fact that some of the particle
modes are backscattered into the black hole by means of spacetime curvature.

For the special case of the Schwarzschild metric where κ = (4GM)−1,
(7.14) becomes

TBH = �

8πGkBM
≈ 6.2× 10−8 M�

M
K. (7.16)
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For solar-mass black holes (and even more so for the Galactic black hole), this
is of course utterly negligible—the black hole absorbs much more from the
ubiquitous 3K-microwave background radiation than it radiates itself.

One can, however, estimate the lifetime of a black hole by making the
plausible assumption that the decrease in mass is equal to the energy radiated
to infinity. Using the Stefan–Boltzmann law, one gets

dM

dt
∝ −AT 4

BH ∝ −M2 ×
(

1

M

)4

= − 1

M2

which, when integrated, yields

t (M) ∝ (M3
0 − M3) ≈ M3

0 . (7.17)

Here M0 is the initial mass. It has been assumed that after the evaporation
M � M0. Very roughly, the lifetime of a black hole is thus given by

τBH ≈
(

M0

mP

)3

tP ≈ 1065
(

M0

M�

)3

years (7.18)

(mP and tP denote Planck mass and Planck time: mP = �/ lP, tP = lP). The
Galactic black hole thus has a lifetime of about 3 × 1085 years! If in the early
universe primordial black holes with M0 ≈ 5× 1014 g were created, they would
evaporate at the present age of the universe, see section 7.5.

A very detailed investigation into black hole evaporation was made by Page
(1976). He found that for M � 1017 g the power emitted from an (uncharged,
non-rotating) black hole is

P ≈ 2.28× 10−54L�
(

M

M�

)−2

81.4% of which is in neutrinos (he considered only electron- and muon-
neutrinos), 16.7% in photons, and 1.9% in gravitons, assuming that there are no
other massless particles around. Since a black hole emits all existing particles in
Nature, this result would be changed by the existence of massless supersymmetric
or other particles. In the range 5× 1014 g � M � 1017 g, Page found

P ≈ 6.3× 1016
(

M

1015 g

)−2 erg

s

45% of which is in electrons and positrons, 45% in neutrinos, 9% in photons,
and 1% in gravitons. Massive particles with mass m are only suppressed if
kBTBH < m. For M < 5× 1014 g higher-mass particles are also emitted.

All of these derivations use the approximation that the spacetime background
remains classical2. In a theory of quantum gravity, however, such a picture cannot
2 This limit is referred to as the semiclassical approximation to quantum gravity (see, e.g., Kiefer
1994).
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be maintained. Since the black hole becomes hotter while radiating, see (7.16),
its mass will eventually enter the quantum-gravity domain M ≈ mP, where
the semiclassical approximation breaks down. The evaporation then enters the
realm of speculation. As an intermediate step one might consider the heuristic
‘semiclassical’ Einstein equations,

Rab − 1
2 gab R = 8πG〈Tab〉 (7.19)

where on the right-hand side the quantum expectation value of the energy–
momentum tensor appears. The evaluation of 〈Tab〉—which requires
regularization and renormalization—is a difficult subject on its own (Frolov and
Novikov 1998). The renormalized 〈Tab〉 is essentially unique (its ambiguities can
be absorbed in coupling constants) if certain sensible requirements are imposed.
Evaluating the components of the renormalized 〈Tab〉 near the horizon, one finds
that there is a flux of negative energy into the hole. Clearly this leads to a decrease
of the black hole’s mass. These negative energies represent a typical quantum
effect and are well known from the—accurately measured—Casimir effect. This
occurrence of negative energies is also responsible for the breakdown of the
classical area law discussed in section 7.2.

The negative flux near the horizon also lies at the heart of the ‘pictorial’
representation of Hawking radiation that is often used, see, e.g., Parikh and
Wilczek (2000). In vacuum, virtual pairs of particles are created and destroyed.
However, close to the horizon, one partner of this virtual pair might fall into the
black hole, thereby liberating the other partner to become a real particle and
escaping to infinity as Hawking radiation. The global quantum field exhibits
quantum entanglement between the inside and outside of the black hole, similar
to the case of the accelerated observer discussed earlier.

I want to end this section by giving explicit expressions for the Hawking
temperature (7.14) in the case of rotating and charged black holes. For the Kerr
solution, one has

kBTBH = �κ

2π
= 2

(
1+ M√

M2 − a2

)−1
�

8πM
<

�

8πM
. (7.20)

Rotation thus reduces the Hawking temperature. For the Reissner–Nordström
solution (describing a charged spherically symmetric black hole) one has

kBTBH = �

8πM

(
1− (Gq)4

r4+

)
<

�

8πM
. (7.21)

Thus, electric charge also reduces the Hawking temperature. For an extremal
black hole, r+ = GM = √G|q|, and thus TBH = 0.
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7.4 Interpretation of entropy

We have seen in the previous section that—if quantum theory is taken into
account—black holes emit thermal radiation with the temperature (7.14).
Consequently, the laws of black hole mechanics discussed in section 7.2 do,
indeed, have a physical interpretation as thermodynamical laws—black holes are
thermodynamical systems.

From the First Law (7.2) one can therefore also infer an expression for the
black hole entropy. From dM = TBH dSBH one finds the ‘Bekenstein–Hawking
entropy’:

SBH = kB A

4G�
(7.22)

in which the unknown factor in (7.7) has now been fixed. For the special case of
a Schwarzschild black hole, this yields

SBH = kBπR2
0

G�
. (7.23)

It can easily be estimated that SBH is much bigger than the entropy of the star
that collapsed to form the black hole. The entropy of the sun, for example, is
S� ≈ 1057kB, whereas the entropy of a solar-mass black hole is about 1077kB,
which is 20 orders of magnitude larger! For the Galactic black hole, the entropy
is SGBH ≈ 1090kB which is 100 times the entropy of the Universe. (Under the
‘entropy of the Universe’ I understand the entropy of the present Universe up to
the Hubble radius without taking black holes into account. It is dominated by the
entropy of the cosmic microwave background radiation.)

Can a physical interpretation of this huge discrepancy be given? Up to now,
the laws of black hole mechanics are only phenomenological thermodynamical
laws. The central open question therefore is: can SBH be derived from quantum-
statistical considerations? This would mean that SBH could be calculated from a
Gibbs-type formula according to

SBH
?= −kB Tr(ρ ln ρ) ≡ SSM (7.24)

where ρ denotes an appropriate density matrix and SSM is the quantum-statistical
entropy; SBH would then somehow correspond to the number of quantum
microstates that are consistent with the macrostate of the black hole that is—
according to the no-hair theorem—uniquely characterized by mass, angular
momentum, and charge. Some important questions are:

• Does SBH correspond to states hidden behind the horizon?
• Or does SBH correspond to the number of possible initial states?
• What are the microscopic degrees of freedom?
• Where are they located (if at all)?
• Can one understand the universality of the result?
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• What happens to SBH after the black hole has evaporated?
• Is the entropy a ‘one-loop’ or a ‘tree-level’ effect?

The attempts to calculate SBH by state counting are usually done in the ‘one-
loop limit’ of quantum field theory in curved spacetime—this is the limit where
gravity is classical but non-gravitational fields are fully quantum, and it is the limit
where the Hawking radiation (7.14) has been derived. The expression (7.22) can
already be calculated from the so-called ‘tree level’ of the theory, where only the
gravitational degrees of freedom are taken into account. Usually a saddle-point
approximation for a Euclidean path integral is being performed. Such derivations
are, however, equivalent to derivations within classical thermodynamics, cf Wald
(2001).

If the entropy (7.22) is to make sense, there should be a generalized Second
Law of Thermodynamics according to which

d

dt
(SBH + SM) ≥ 0 (7.25)

where SM denotes the non-gravitational entropy. The validity of (7.25), although
far from being proven in general, has been shown in a variety of thought
experiments. One of the most instructive of these was devised by Unruh and
Wald. It makes use of the box shown in figure 7.1 that is adiabatically lowered
towards a (spherically symmetric) black hole.

At asymptotic infinity r → ∞, the black hole radiation is given by (7.14).
However, for finite r , the temperature is modified by the occurrence of a redshift
factor χ(r) ≡ (1 − 2GM/r)1/2 in the denominator. Since the box is not in free
fall, it is accelerated with an acceleration a. From the relation (Wald 1984)

κ = lim
r→R0

(aχ) (7.26)

one has

TBH(r) = �κ

2πkBχ(r)
r→R0−→ �a

2πkB
(7.27)

which is just the Unruh temperature (7.13)! This means that a freely falling
observer near the horizon observes no radiation at all, and the whole effect (7.27)
comes from the observer (or box) being non-inertial with acceleration a.

The analysis of Unruh and Wald, which is a generalization of the thought
experiment discussed at the end of section 7.2, shows that the entropy of the
black hole increases at least by the entropy of the Unruh radiation displaced
at the floating point—this is the point where the gravitational force (pointing
downwards) and the buoyancy force from the Unruh radiation (7.27) are in
equilibrium. Interestingly, it is just the application of ‘Archimedes’ principle’
to this situation that rescues the generalized Second Law (7.25).

An inertial, i.e. freely falling, observer does not see any Unruh radiation.
How does he/she interpret this result? For him/her the box is accelerated and
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therefore the interior of the box fills up with negative energy and pressure—a
typical quantum effect that occurs if a ‘mirror’ is accelerated through the vacuum.
The ‘floating point’ is then reached after this negative energy is so large that the
total energy of the box is zero.

I want to conclude this section with some speculations about the final stages
of black hole evolution and the information-loss problem. The point is that—
in the semiclassical approximation used by Hawking—the radiation of a black
hole seems to be purely thermal. If the black hole evaporates completely and
leaves only thermal radiation behind, one would have a conflict with established
principles in quantum theory: any initial state (in particular a pure state) would
evolve into a mixed state. In ordinary quantum theory, because of the unitary
evolution of the total system, this cannot happen. Formally, Trρ2 remains
constant under the von Neumann equation; the same is true for the entropy
SSM = −kB Tr(ρ lnρ): For a unitarily evolving system, there is no increase in
entropy. If these laws were violated during black hole evaporation, information
would be destroyed. This is, indeed, the speculation that Hawking made after
his discovery of black hole radiation. The attitudes towards this information-loss
problem can be roughly divided into the following classes:

• The information is indeed lost during black hole evaporation, and the
quantum-mechanical Liouville equation is replaced by an equation of the
form

ρ −→ $ρ �= SρS† (7.28)

where $ is Hawking’s dollar matrix which generalizes the ordinary S-matrix
S.

• The full evolution is in fact unitary; the black hole radiation contains subtle
quantum correlations that cannot be seen in the semiclassical approximation.

• The black hole does not evaporate completely, but leaves a ‘remnant’ with
mass in the order of the Planck mass that carries the whole information.

In my opinion, the information-loss problem is only a pseudoproblem.
Already in the original calculation of Hawking (1975) only pure states appear.
Reference to thermal radiation is being made because the particle number operator
in the final pure state possesses an exact Planckian distribution. As has been
shown in Kiefer (2001), the coupling of this pure state (a squeezed state in
quantum-optics language) to its natural environment produces a thermal ensemble
for the Hawking radiation, which constitutes an open quantum system, after this
environment has been traced out. The thermal nature of this radiation is thus a
consequence of decoherence (Giulini et al 1996).

There exist many attempts to derive the Bekenstein–Hawking entropy (7.22)
within approaches to quantum gravity, see, e.g., Kiefer (1999) and Wald (2001)
for more details and references. Examples are the derivations within superstring
theory (counting of states referring to microscopic objects called D-branes),
canonical quantum gravity, Sakharov’s induced gravity, conformal field theories,
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and others. Although many of these look very promising, a final consensus has
not yet been reached.

7.5 Primordial black holes

Can the previously discussed quantum effects of black holes be observed? As
has already been mentioned, black holes formed by stellar collapse are much
too heavy to exhibit quantum behaviour. To form smaller black holes one needs
higher densities which can only occur under the extreme situations of the early
Universe3. Such primordial black holes can originate in the radiation-dominated
phase during which no stars or other objects can be formed.

Consider for simplicity a spherically symmetric region with radius R and
density ρ = ρc + δρ embedded in a flat Universe with the critical density ρc, cf
Carr (1985). For spherical symmetry the inner region is not affected by matter in
the surrounding part of the Universe, so it will behave like a closed Friedmann
Universe (since its density is overcritical), i.e. the expansion of this region will
come to a halt at some stage, followed by a collapse. In order to reach a complete
collapse, the (absolute value of the) potential energy, V , at the time of maximal
expansion has to exceed the inner energy, U , given by the pressure p, that is,

V ∼ GM2

R
∼ Gρ2 R5 � pR3. (7.29)

If the equation of state reads as p = wR (w = 1/3 for radiation dominance), this
gives

R �
√
w

1√
Gρ
. (7.30)

The lower bound for R is thus just given by the Jeans length. An upper bound
also exists. The reason is that R must be smaller than the curvature radius (given
by 1/

√
Gρ) of the overdense region at the moment of collapse. Otherwise the

region would contain a compact three-sphere which is topologically disconnected
from the rest of the Universe. This case would not then lead to a black hole within
our Universe. Using ρ ∼ ρc ∼ H 2/G, where H denotes the Hubble parameter
of the background flat Universe, one has the condition

H−1 � R �
√
wH−1 (7.31)

evaluated at the time of collapse, for the formation of a black hole. This relation
can also be rewritten as a condition referring to any initial time of interest
(Carr 1985). In particular, one is often interested in the time where the fluctuation
enters the horizon in the radiation-dominated Universe. This is illustrated in
figure 7.3, where the presence of a possible inflationary phase at earlier times
is also shown.
3 In theories with large extra dimensions it is imaginable that the quantum effects of black holes can
be seen at ordinary accelerators, see Dimopoulos and Landsberg (2001).
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log
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log a(t)ai a ftk,exit tk,enter
aeq

λk(t) := a(t)
k

H−1(t)

Figure 7.3. Time development of a physical scale λ(t) and the Hubble horizon H−1(t).
During an inflationary phase H−1(t) remains approximately constant. After the end of
inflation (a f ) the horizon H−1(t) increases faster than any scale. Therefore λk enters the
horizon again at tk,enter in the radiation- (or matter-) dominated phase.

At horizon entry one gets, denoting δ ≡ δρ/ρc,

1 � δenter � 0.3. (7.32)

This is, however, only a rough estimate. Numerical calculations give instead the
bigger value of δmin ≈ 0.7 (Niemeyer and Jedamzik 1999).

Taking from (7.31) R ≈ √
wH−1, one gets for the initial mass of a

primordial black hole (PBH)

MPBH = 4π

3
ρR3 ≈ 4π

3
ρc(1+ δ)w3/2 H−3 ≈ w3/2MH (7.33)

where MH ≡ (4π/3)ρcH−3 denotes the mass inside the horizon. Since MPBH
is of the order of this horizon mass, a collapsing region will form a black hole
practically immediately after horizon entry. Using the relation MH = t/G, valid
for a radiation-dominated Universe, one gets from (7.33) the quantitative estimate

MPBH [g] ≈ 1038t [s]. (7.34)

This means that one can create Planck-mass black holes at the Planck time,
and PBHs with MPBH ≈ 5 × 1014 g at t ≈ 5 × 10−24 s. The latter value
is important since, according to (7.18), black holes with masses smaller than
MPBH ≈ 5 × 1014 g have by now evaporated due to Hawking radiation. PBHs
with bigger mass are still present today. At t ≈ 10−5 s, one can create a solar-
mass black hole and at t ≈ 10 s (the time of nucleosynthesis) one could form a
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PBH with the mass of the Galactic black hole. The initial mass can increase by
means of accretion, but it turns out that this is negligible under most circumstances
(Carr 1985).

In the presence of an inflationary phase in the early Universe, all PBHs
produced before the end of inflation are diluted away. This gives the bound

MPBH > MH(TRH) ≈
m3

p

10.88T 2
RH

∼ 1 g (7.35)

if for the reheating temperature TR H a value of 1016 GeV is chosen.
According to the numerical calculations by Niemeyer and Jedamzik (1999),

there exists a whole spectrum of initial masses,

MPBH = K MH(δ − δmin)
γ (7.36)

a relation that is reminiscent of the theory of critical phenomena. This may change
some of the quantitative conclusions.

To calculate the production rate of PBHs, one needs an initial spectrum of
fluctuations. This is usually taken to be of a Gaussian form, as predicted by most
inflationary models (cf Liddle and Lyth 2000). Therefore, there always exists a
non-vanishing probability that the density contrast is high enough to form a black
hole, even if the maximum of the Gaussian corresponds to a small value. One
can then calculate the mass ratio (compared to the total mass) of regions which
will develop into PBHs with mass MPBH � M , see, e.g., Bringmann et al (2001
section 2) for details. This mass ratio, given by

α(M) := ρPBH,M

ρr
≈ �PBH,M ≡ ρPBH,M

ρc
(7.37)

where ρr is the radiation density, is then compared with observation. This, in
turn, gives a constraint on the theoretically calculated initial spectrum. Table 7.2
presents various observational constraints on α (see Green and Liddle 1997). The
corresponding maximal value for each α is shown for the various constraints in
figure 7.4.

Constraints arise either from Hawking radiation or from the gravitational
contribution of PBHs to the present Universe (last entry). PBHs with initial mass
of about 5 × 1014 g evaporate ‘today’. (They release about 1030 erg in the last
second.) From observations of the γ -ray background one can find the constraint
given in table 7.2 which corresponds to an upper limit of about 104 PBHs per
cubic parsec or �PBH,0 < 10−8. One can also try to observe directly the final
evaporation event of a single PBH. This gives an upper limit of about 4.4× 105

events per cubic parsec per year.
Given these observational constraints, one can then calculate the ensuing

constraints on the primordial spectrum. The gravitational constraint �PBH,0 < 1
gives surprisingly strong restrictions (cf Bringmann et al 2001). For a scale-
free spectrum of the form ∝ kn , as is usually discussed for inflationary models,
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Table 7.2. Constraints on the mas fraction α(M) := ρPBH,M
ρr

≈ �PBH,M of primordial
black holes at their time of formation (Green and Liddle 1997).

Constraint Range Reason

α < 0.1(M/1015 g)
3
2 M < 1015 g Radiation relics

α < 10−17(109 g/M)
1
2 109 g < M < 1011 g nn/np-ratio

α < 10−22(M/1010 g)
1
2 1010 g < M < 1011 g Deuterium dissociation

α < 10−21(M/1011 g)
5
2 1011 g < M < 1013 g Helium fission

α < 10−16(109 g/M) 109 g < M < 1013 g Entropy per baryon
α < 10−26 M ≈ 5× 1014 g γ background

α < 10−18(M/1015 g)
1
2 M > 1015 g Present PBH density
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Figure 7.4. Strongest constraints on the initial PBH mass fraction. The numbers
correspond to the various entries in table 7.2.

one finds restrictions on n that are comparable to the limits obtained by large-
scale observations (the anisotropy spectrum of the cosmic microwave background
radiation). Since these restrictions come from observational constraints referring
to much smaller scales, they constitute an important complementary test.

The question as to whether PBHs really exist in nature has thus not yet
been settled. Their presence would be of an importance that could hardly be
overestimated. They would give the unique opportunity to study the quantum
effects of black holes and could yield the crucial key for the construction of a
final theory of quantum gravity.
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Chapter 8

The mass of the Galactic Center black hole

Andreas Eckart
Universität zu Köln, Germany

With our knowledge of black holes and the Galactic structure from chapters 1, 2,
and 4, we can now address the Galactic Center black hole itself. The investigation
of stellar velocities close to the Galactic Center has become the primary means
for determining the mass and mass density of this black hole. This chapter recalls
the history of near-infrared observations of the Galactic Center, describes the
near-infrared speckle imaging technique used recently, and presents the results
and prospects of imaging and spectroscopy of stars near the black hole.

8.1 Introduction and summary

At a distance of only 8 kpc the Galactic Center is the closest nucleus of a galaxy,
100 to 1000 times closer than the nearest extragalactic systems. It is thus a unique
laboratory in which physical processes that are also relevant for nuclei of other
galaxies can be studied with the highest angular resolution possible. The gas and
dust in the line of sight to the center, however, make it impossible to observe it at
optical or UV wavelengths. It is only accessible in the radio, infrared and X-ray
domain. The optical extinction amounts to 30 magnitudes (AV = 30mag) or an
attenuation of visible light by a factor of 10−12. This corresponds in the near-
infrared K band at a wavelength of 2.2 µm to an extinction of only AK = 3.3mag.

Subarcsecond-angular-resolution line imaging (Eckart et al 1995, Tamblyn
et al 1996) and 3D imaging spectroscopy (Krabbe et al 1995, Genzel et al 1996)
have shown that several of the brightest members of the central cluster—the so
called IRS16 complex—are He I emission line stars. These objects show in their
spectra prominent broad He I and H I recombination lines in emission. From
non-LTE (LTE = local thermal equilibrium), stellar atmosphere modeling of the
observed emission characteristics of several of the He I stars Najarro et al (1994,
1997) have inferred that these objects are moderately hot (17 000–30 000 K), very
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luminous (1–30×105 L�) massive stars whose helium-rich surface layers expand
as powerful stellar winds with velocities of 200–800 km s−1 and mass-loss rates
of 1–70 × 10−5 M�/yr. These stars have formed within the last few million
years and provide the dominant fraction of the total luminosity of the central
parsec. Imaging spectroscopy shows that within the central 0.3–0.4 pc of the
stellar cluster bright late-type stars (supergiants and the brightest AGB stars) are
absent but that the core is surrounded by a ring of red supergiants/AGB stars
showing strong CO-band head absorptions in their near-infrared spectra (Genzel
et al 1996, see also earlier work by Sellgren et al 1990, Haller et al 1996).

The gas and stellar velocities increase toward the position of Sagittarius A∗
(Sgr A∗: see chapter 11) indicating the presence of a large compact mass. The
evidence for a dark central mass of 1–3×106 M� in the Galactic Center has been
steadily growing over the past two decades from observations of radial velocities
of gas and stars (Lacy et al 1980, Serabyn and Lacy 1985, Genzel et al 1985,
Sellgren et al 1990, Krabbe et al 1995, Haller et al 1996, Genzel et al 1996). A
reliable estimate of the enclosed mass and its compactness, however, can only be
made if the full velocity field (radial and transverse components) is known (e.g.
Genzel et al 2000, Ghez et al 2000). Furthermore, stars as tracers of the velocity
field are much more reliable than gas, since they are not influenced by magnetic
pressure or frictional forces. Using stars as tracers of the gravitational potential
therefore allows us to measure the mass content and mass concentration within
the central parsec of our Galaxy. Recent review articles on the phenomena and
physical properties of the Galactic Center are: Genzel and Townes (1987), Genzel
et al (1994), Blitz et al (1993), Genzel (1989), Mezger et al (1996), Morris and
Serabyn (1996), and Melia and Falcke (2001).

This chapter summarizes results of a program to determine stellar velocities
in the plane of the sky (proper motions). From high-resolution near-infrared
imaging over the past 10 years proper motions for about 100 stars between
about 0.01 and 0.3 pc from the compact radio source Sgr A∗ have been
determined. The proper motion and radial velocity dispersions are in very
good agreement indicating that the stellar velocity field is, on average, close to
isotropic. Comparing individual images from different observing epochs one finds
within the central arcsecond (0.04 pc) several fast moving stars with velocities in
excess of 1000 km s−1 in the immediate vicinity (0.01 pc) of Sgr A∗. From
the stellar radial and proper motion data, one can infer that a dark mass of
2.9± 0.35× 106 M� must reside within about a light week of the compact radio
source. Its density must be about 4×1012 M� pc−3 or greater (Genzel et al 2000).

A direct link between the radio and infrared positional reference frames
via the maser emission of five infrared bright stars leads to the first possible
detection of a near-infrared source at the position of Sgr A∗. Speckle spectroscopy
observations of sources within the central arcsecond allow an estimate of their
stellar masses and via an equipartition argument a determination of a lower limit
to the mass of about 103−5 M� that are associated with Sgr A∗ itself (Reid
et al 1999). There is no stable configuration of normal stars, stellar remnants
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(neutron stars or stellar black holes) or sub-stellar entities that can account for the
combination of both—the high mass and the high mass density (Maoz 1998). The
combination of these data—especially the proper motion measurements of the
stars in the central arcsecond—now provides compelling evidence for a massive
black hole at the core of the Milky Way. In order to put the presented data in a
broader context I summarize in the following the history of imaging the Galactic
Center in the near-infrared.

8.2 A brief history of imaging the Galactic Center in the
near-infrared

Attempts to detect a source at the position of the Galactic Center in the near
infrared started as early as 1945 (Stebbins and Whitford 1947, Moroz 1961).
Due to a combination of a lack in sensitivity and coarse sampling these initial
efforts were not successful. The first detection was achieved by Becklin and
Neugebauer (1968) at a wavelength of 2.2 µm in scans with 0.25′ and 0.08′
apertures corresponding to linear resolutions of 0.62 and 0.2 pc. These scans
revealed the compact nuclear stellar cluster for the first time. In the following
years single detector maps with higher spatial resolution were obtained by a
number of authors. These maps resolved the central cluster into individual
bright complexes. The introduction of multiplexed, near-infrared array detectors
allowed more efficient mapping with yet higher angular resolution. The first
maps of the Galactic Center using array detectors were obtained by Forrest et
al (1986). These measurements started to resolve the central IRS16 complex into
many individual sources. Lunar occultation measurements (Simons et al 1990,
Simon et al 1990, Adams et al 1988) demonstrated that the brightest sources in
the IRS 16 complex (IRS 16NE, 16C, 16SW and 16NW) are very compact with
diameters less than 100 AU and therefore are most likely individual or multiple
stars but not large clusters. Two-dimensional speckle imaging (as presented here
and first published in Eckart et al 1992 and subsequent papers) resulted in the
first diffraction-limited maps (0.15′′ angular resolution corresponding to 0.006 pc)
of the central 20′′ × 20′′ at 2.2 µm and 1.6 µm. So far these measurements
have resolved the central cluster including several compact stellar complexes like
IRS 1, IRS 13, and IRS 16SW complexes into about 600 individual stars (Eckart
et al 1995). They have also revealed a complex of near-infrared sources very
close to the position of Sgr A∗ for the first time (Genzel et al 1997). These
results have been confirmed by repeated speckle imaging at the NTT, observations
under excellent seeing conditions (Herbst et al 1993) as well as the first ‘tip-
tilt’ (a crude adaptive optics technique to compensate for seeing) measurements
(Close et al 1995) at 1.6 µm with a resolution of 0.3′′. These latter observations,
however, have not been able to resolve the very central stellar cluster. Only
recent speckle imaging with the 10 m diameter Keck telescope (Klein et al 1996,
Ghez et al 1998) as well as the first adaptive optics measurements (Gezari et al
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2000 and, most recently, the results from the ESO VLT adaptive optics: NAOS
CONICA, in preparation) have revealed the same subarcsecond structure for the
small stellar cluster around the radio position of Sgr A∗. These observations have
also confirmed the velocities of the stars in this area. With these techniques
available it will be possible in the next years to exploit the Galactic Center as
a laboratory for studying the physical processes in the immediate vicinity of a
massive black hole. Future measurement with 8–10 m class telescopes as well
as near-infrared interferometric measurements will result in a determination of
the full three-dimensional orbits of the stars in the center. They will also help
to monitor the variable source at the position of Sgr A∗, will allow us to further
constrain physical models of black hole accretion, and help to search for potential
lensing effects of background stars by the central black hole (see Alexander and
Sternberg 1999, Alexander and Loeb 2001; and chapter 9).

8.3 Speckle interferometry

Detailed descriptions of (infrared) speckle interferometry and imaging have been
given in several reviews (Christou 1991, Roddier 1989, Mariotti 1989, Dainty
1975). Here I only give a brief summary in order to introduce expressions that
are linked to this technique and that are used in the following description of the
data reduction and interpretation. The atmospheric turbulence above the telescope
distorts the otherwise plane stellar wavefronts and is responsible for a point spread
function that varies rapidly with time. This phenomenon is called seeing. Over
entities of the turbulent layer—seeing cells with a Fried (1966) diameter r0 ∼ 20–
50 cm in the near-infrared (NIR)—the phase front predominantly experiences a
linear phase change only. Neighouring stars within the isoplanatic patch of about
a 20–30′′ diameter in the NIR have a similar resulting PSF (point spread function)
within the coherence time of the atmosphere (up to a few 100 ms in the NIR).

An image I (x, y) of an object O(x, y) taken in the focal plane (with
coordinates x and y) through the combination of the telescope and the turbulent
atmosphere can be written as the convolution of O(x, y) with the combined
telescope and atmospheric PSF P(x, y):

I (x, y) = O(x, y) ∗ P(x, y). (8.1)

Co-adding all short exposures after shifting the positions of the brightest speckle
in the seeing cloud I (x, y) of a bright reference object to a common location
results in an image containing substantial power at the diffraction limit of the
telescope. The speckle image processing can formally be described in the
following way: two-dimensional images I (x, y) can be written as the object
O(x, y) convolved with the combined telescope and atmospheric PSF P(x, y)
plus an additive noise component N(x, y),

I (x, y) = O(x, y) ∗ P(x, y)+ N(x, y). (8.2)
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In the simple shift-and-add algorithm one determines the location of the
brightest speckle in the seeing disk of a reference star in each of the M images
Im(x, y) of a series of short exposures and shifts them to the same position before
summing the images:

S(x, y) = 1

M

M∑
m=1

Im(x + xm, y + ym). (8.3)

The xm and ym are the corresponding shift vector components. One obtains a
shift-and-add image S(x, y) that can be written as the object convolved with a
shift-and-add PSF Ps(x, y) plus a modified noise contribution Ns(x, y):

S(x, y) = 1

M

(
O(x, y) ∗

M∑
m=1

Pm(x + xm, y + ym)+
M∑

m=1

Nm (x + xm, y + ym)

)
(8.4)

or

S(x, y) = 1

M
(O(x, y) ∗ Ps(x, y)+ Ns (x, y)). (8.5)

For each star in the field of view (smaller than the isoplanatic patch size)
this PSF results in a diffraction-limited image of the object on top of a residual
seeing background built up by the contributions from all fainter speckles. In
contrast to the long exposure (a simple co-addition of individual frames) the raw
shift-and-add image contains information at the diffraction limit of the telescope.
In the NIR and especially for the Galactic Center observations the shift-and-
add algorithm has the following advantages over the other well-known speckle
reduction algorithms which are based on a Fourier analysis of the images like
the Knox–Thompson method and bi-spectrum analysis: (1) no Fourier transforms
have to be involved resulting in a fast processing of a large amount of data; and (2)
local artifacts in the image plane are not spread all over the Fourier plane making it
easier to employ deconvolution methods especially if the bright supergiant IRS 7
is in the same field of view as the Sgr A∗ region.

After application of the shift-and-add algorithm the resulting images contain
up to approximately 20% of the image power at the diffraction limit but they still
have to be corrected for the PSF produced by the shift-and-add algorithm. In the
data reduction scheme presented here this is done using the Lucy algorithm (Lucy
1974). This correction aims at replacing the PSF of the shift-and-add algorithm
that contains a broad seeing pedestal in addition to a diffraction-limited core with
a single Gaussian-shaped PSF.

8.4 The center of the Milky Way

8.4.1 Imaging and proper motions

Over the past 10 years or so we have been conducting a programme to study
the properties of the central nuclear stellar cluster via NIR high spatial resolution
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Figure 8.1. A comparison of two diffraction-limited images taken at different
epochs—1994.27 and 2000.42—using the MPE SHARP camera at the ESO NTT. The
cross marks the position of the radio source Sgr A∗. The arrows indicate the velocities of
stars in the central 1.5′′ × 1.5′′. Sources S1, S2, and S8 are labeled. See also color section.

measurements using the MPE (Max-Planck-Institut für extraterrestrische Physik)
speckle camera SHARP at the 3.5 m New Technology Telescope (NTT) of the
European Southern Observatory (ESO). This program has resulted in the very
first detection of the proper motions of stars that correspond to velocities of up to
1400 km s−1 in the central arcsecond in the vicinity of Sgr A∗ (Eckart and Genzel
1996, 1997). These results have been confirmed by Ghez et al (1998). On the
1.5–3σ level we have now detected (Eckart et al 2001, 2002) orbital curvatures
which confirm the recent results by Ghez et al (2000).

In figure 8.1 we show the stars in the central 2′′ for two representative
epochs: 1994.27 and 2000.42. The position of the compact radio source Sgr A∗
is indicated by a central cross. In the image on the left-hand side the velocities
are shown as vectors with their end points at the position of the corresponding
stars at the later epoch. A comparison of both images clearly shows that the
density of sources especially in the central arcsecond is high enough that at the
currently reached point source sensitivity (mostly limited by the wings of bright
neighboring stars) this region needs to be monitored at least once per year. Such
a dense monitoring allows us to identify and track the sources without any doubt.
For the fastest star—S1—the angular velocity of almost 40 mas yr−1 corresponds
to a linear velocity of 1400 km s−1.

The analysis of our best images over the past 10 years has resulted in the
detection of the proper motions of stars within the central arcsecond. These
motions translate into a one-dimensional velocity dispersion of the stars in
the central arcsecond (corrected for the measurement error) of the order of
>400 km s−1 (within a radius of∼0.5′′). Of the 2×104 proper motions in Genzel
et al (2000), 48 (23%) are determined to 4σ or better. Five proper motions are
determined at the ∼10σ level. Of the 227 line-of-sight velocities, 38 (17%) are
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determined to 4σ or better. For at least 14 (of 29) He I emission-line stars and for
18 late-type stars we now have determinations of all three velocity components.
With the exception of small amounts of anisotropy (Genzel et al 2000; which are
taken into account in Jeans modeling; see later) between 0.035 and 0.35 pc from
the compact radio source Sgr A∗ the projected proper motion velocity dispersion
per coordinate is in excellent agreement with the radial velocity dispersion results.

Overall the stellar motions do not deviate strongly from isotropy and are
consistent with a spherical isothermal stellar cluster. However, a small deviation
from isotropy is found for the sky-projected velocity components of the young,
early-type stars. Most of the bright He I emission line stars are on apparently
tangential orbits. This overall rotation could be a remnant of the original angular
momentum pattern in the interstellar cloud from which these stars were formed.
The fainter, fast moving stars within ∼1′′ from Sgr A* (the ‘Sgr A* cluster’)
appear to be moving largely on radial orbits. Speckle spectroscopy with SHARP
at the NTT (Genzel et al 1997) and slit spectroscopy with ISAAC at the VLT
suggest that several of them are early-type stars. This is consistent with the
idea that these stars are members of the early-type cluster with small angular
momentum and therefore fell into the immediate vicinity of Sgr A* (Genzel et al
2000, Gerhard 2000).

8.4.2 Spectroscopy

Eckart et al (1999) reported results based on new NIR observations of the central
stellar cluster of our Galaxy conducted with the infrared spectrometer ISAAC at
the ESO VLT UT1 and the MPE speckle camera SHARP at the ESO NTT (see
also Herbst et al 1993, Figer et al 2000). The ISAAC observations resulted in
λ/�λ ∼ 5000 K-band spectra of the 2.058 µm He I, 2.165 µm Br γ emission
lines, and 2.29 µm CO-bandhead absorption line (see figure 8.2). These data
clearly demonstrate that there is no strong CO-bandhead absorption originating
in the northern part (S1/S2 area) of the central stellar cluster at the position of
Sgr A∗. This makes it likely that these K ∼ 14.5 stars are O9–B0.5 stars with
masses of 15 to 20 M�. Weaker CO-bandhead absorption in the southern part of
the cluster (S10/S11 area) is most likely due to contributions from neighbouring
stars. Eckart et al (1999) also report the detection of Br γ line emission at the
position of the central stellar cluster which could be associated with the ‘mini-
spiral’ rather than with the Sgr A∗ cluster itself.

8.4.3 Enclosed mass

Together with the VLBI maser nucleus of NGC 4258 (Greenhill et al 1995,
Myoshi et al 1995) the compact dark mass in the Galactic Center is currently the
best and most promising case for a supermassive nuclear black hole (Maoz 1998).
The new anisotropy-independent mass estimates (Leonard–Merritt estimators of
the proper motions) as well as Jeans modeling (explicitly including velocity
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Figure 8.2. Spectra of the CO(2–0) and CO(3–1) band head absorption toward the northern
part of the central Sgr A∗ stellar cluster and a star to the south of it. The star and the
northern area are indicated in a contour plot of the 2 µm continuum emission map from
the central 2.9′′ × 2.9′′ as obtained with SHARP at the NTT.

anisotropy, see figure 8.3) result in a compact (<0.0058 pc) mass close to
2.9 × 106 M� with a mass density greater than 4 × 1012 M� pc−3 (Genzel et
al 2000, see also Eckart et al 2001, 2002). One can show that any cluster of
that mass at such a high density cannot be stable over more than 106–107 years
(Maoz 1998). Equipartition arguments that include the known proper motions of
the radio source Sgr A∗ (<16 km s−1, Backer 1996, Reid et al 1999, Genzel et al
2000) and the estimated mass and known proper motion of the inner fast moving
stars (Eckart and Genzel 1997, Genzel et al 1997) result in a lower limit of at least
103 M� that has to be associated with Sgr A∗. The current conclusion is that this
mass is most likely contained in a single massive black hole.

Due to the limited number of detected stars we currently use a minimum
radius for our determination of the mass and mass density of 0.01 pc (0.25′′). The
α = 5 Plummer (see later) model of a dark cluster results in a core radius of such a
hypothetical cluster of r0 = 0.0058 pc (0.23′′) and corresponding central density
of >4× 1012 M� pc−3 (see earlier). The star S2 is currently at a distance of less
than 0.1 from the center—four times closer than the minimum radius previously
mentioned. If the orbit of S2 remains consistent with a central unresolved mass of
2.9×106 M� the mass density is at least 64 times higher, i.e. 2.4×1014 M� pc−3.
In this case the collapse life time would shrink to only a few 106 years, making
the Galactic Center the strongest of all massive black hole candidates.

Figure 8.3 shows the mass distribution in the central 10 pc of the Galaxy
obtained from stellar and gas dynamics (for R = 8.0 kpc). Bold ‘G’s denote mass
estimates from ionized and neutral gas dynamics. Rectangles with crosses and
downward-pointing triangles denote the isotropic mass modeling of Genzel et al
(1996, 1997), including Jeans modeling of stellar radial velocities (early- and late-
type stars, filled downward-pointing triangles) and Bahcall–Tremaine estimators
of the NTT proper motions until 1996 (open down-pointing triangles; Eckart and
Genzel 1997). Open rectangles (with crosses) are Bahcall–Tremaine estimators
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Figure 8.3. The enclosed mass contained in circular apertures plotted as a function of their
radius. The apertures are centered on the position of Sgr A∗. An explanation is given in
the text. See also colour section.

of the line-of-sight-velocity data only. Open upward-pointing triangles are the
Bahcall–Tremaine estimators of the 1995–96 proper motion data of Ghez et al
(1998). The new anisotropy-independent mass estimates from the present work
are given as filled black rectangles from Leonard–Merritt estimators (Leonard
and Merritt 1989) of the proper motions and as large black crosses connected by
a continuous curve resulting from the Jeans modeling. For comparison several
model curves are shown. The dashes represent the mass model for the (visible)
stellar cluster ML(2 µm) = 2, rcore = 0.38 pc, ρ(r = 0) = 3.5× 106 M� pc−3.
The continuous curve is the sum of this stellar cluster, plus a point mass of
2.9 × 106 M�. The short dashes are the sum of the visible stellar cluster, plus
an α = 5 Plummer model, ρ(r) = ρ(0)[1 + (r/r0)

2]−α/2, of a dark cluster of
central density ∼4× 1012 M� pc−3 and r0 = 0.0058 pc.

8.4.4 Orbital curvatures

For three sources S1, S2 and S8 we have detected a curvature in the orbits on the
1.5σ to 3σ level. In figure 8.4 we show the offset positions for S2 in declination
and right ascension as a function of time. The linear fits to the first and second
half of the data set clearly result in different slopes. Their difference divided by
the time difference between the two intervals is a direct measure of the orbital
curvature. In order to improve the statistics on an estimate of the accelerations we
have used velocities derived from data covering different time intervals (Eckart et
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Figure 8.4. The relative positions of S2 in declination and right ascension as a function of
the observing epoch. The declination velocity plot has been shifted by +300 km s−1.

al 2001, 2002). For S2 we find a curvature of 2.3 ± 0.9 mas yr−2 corresponding
to an acceleration of 95 km s−1 yr−1. For S1 and S8 we find a curvature of
3.8 ± 2.4 mas yr−2 and 3.3 ± 1.1 mas yr−2, respectively. The slopes are in
agreement with those expected from fits of Keplerian orbits to the data (for S2
see figures 8.4 and 8.5). As an example the SHARP data now start to constrain
the possible orbits for S2. For S2 a likely solution (obtained from least-square
fits of Keplerian orbits to the data) is that this star has a line-of-sight offset of
8–9 mpc and a line-of-sight velocity in the range of −200 to −600 km s−1. Due
to current uncertainties in the inclination a combination of −8 to −9 mpc and
200–600 km s−1 is possible as well. Three possible orbits that represent good fits
to the data are shown in figure 8.5. The current data and analysis indicate that S2
is aproaching its periastron.

The accelerations from the SHARP experiment (Eckart et al 2001, 2002) are
consistent with recent results by Ghez et al (2000) and imply that the three stars
orbit a central, compact mass (see figure 8.6).

Star S8 was excluded from the analysis, since the current proper motion
velocity and radial separation from the center indicate that the measured
acceleration requires orbital motion around a compact object with a mass in
excess of 3 × 106 M�. The data suggest that either this star was or is subject
to a close interaction with a different object or that its position measurements are
influenced by the emission of a different cluster star. Therefore, the analysis of
the enclosed mass is solely based on the available data for S1 and S2. For each of
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Figure 8.5. Three inclined Keplerian orbits that have line-of-sight velocities and
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alone we find a velocity of greater than 860 km s−1—the results of the orbit modeling
suggest a full space velocity of up to ∼1050 km s−1.

the two sources S1 and S2 the acceleration values define an acceleration vector at
an angle φ that should point towards the central source. Here we assume that the
probability for the location of the central mass is uniform in φ. In figure 8.6 the
stars S1 and S2 have been plotted at their time-averaged position resulting from
the corresponding data sets. The measurement uncertainties define an error cone.
For the presentation in figure 8.6 the dashed and dotted lines indicate an error
cone that corresponds to a width of 2σ in deviation from the nominal direction
indicated by the acceleration vector. In order to determine the location of the
central mass we perform a maximum likelihood (ML) analysis. As an ML score
we use log(ML) = −χ2

S1/2− χ2
S2/2. The thin contour lines in figure 8.6 indicate

the locations at which log(ML) drops by 0.5 below the corresponding peak values.
Here χ2 = (φ − φ0)

2/(�φ)2, φ0 denotes the angle of the acceleration vector, φ
the angle of any radial line within an error cone, and�φ = σ the half-width of the
cone. The central filled circle in figure 8.6 marks the radio position of Sgr A* and
corresponding uncertainties of ±30 mas. Using the observed curvature value and
the enclosed mass range of 2.6–3.3 × 106 M� imposes a limit on the projected
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is consistent with orbits around a central 3× 106M� object. See also color section.

distance of S1 and S2 from Sgr A*. For the SHARP/NTT data this leads to
an improvement in the determination of the Sgr A* position. We account for
this effect in figure 8.6 by multiplying the log(ML) scores of the error cones
with a Gaussian prior of the appropriate 1/e width centered on the time-averaged
positions of S1 and S2. From the projection of the 1σ contour line (thin contour
line east of the center in figure 8.6) the multiplied probabilities derived from the
SHARP/NTT and NIRC/Keck data result in a position of a central dark mass of
48+54
−24 mas E and 18+42

−61 mas S of the nominal radio position of Sgr A*. Within
these limits the central mass is located at the 68.5% confidence level (�χ = 1.0).
At the 90% confidence level (�χ = 2.71) the central mass is located in an interval
given by 48+109

−48 mas E and 18+72
−133 mas S (thick contour line left of the center in

figure 8.6). Figure 8.6 shows that at the current±30 mas uncertainty of the radio
position of Sgr A* the presently available accelerations of stars S1 and S2 alone
are fully consistent with the hypothesis that the radio source Sgr A* is coincident
with the center of the dark mass.

8.4.5 Is there an infrared counterpart of Sgr A∗?

Menten et al (1996) have identified five H2O/SiO maser stars within the central
20′′ of Sgr A∗ and the position of the radio source Sgr A∗ to within about
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Figure 8.7. A simulation of how the central 1′′ × 1′′ of the Milky Way would be seen in
2000 with the LBT interferometer at a wavelength of 2.2µm. Some of the fast moving stars
are labeled. Given the large instantaneous field of view over which the high LBTI resolving
power can be achieved the motions of the inner fast moving stars (σ1 dim. ∼ 400 km s−1)
can be referenced precisely to a large number (a few hundred objects with mK < 14)
of much slower (σ1 dim. < 100 km s−1) late-type stars in the central stellar cluster. A
close-up view of the LBTI PSF is show in the top right-hand image. See also color section.

±30 mas. It is located within the central stellar cusplike cluster. In 1994, 1995
and March/April 1996 it did not coincide with any of the≈15mag sources therein.
However, in the SHARP June 1996 and the July 1997 data there is evidence for an
additional source between S1, S2, and S3—right at the radio position of Sgr A∗.
In the diffraction-limited SHARP maps taken with a 50 mas and a 25 mas pixel
scale this source manifests itself as an extension of S1 toward S2 (Genzel et al
1997). In the high SNR (resulting from a combination of several tens of thousands
of frames)∼70 mas FWHM maps presented in Genzel et al (1997) the additional
source is clearly separated from S1, S2, and S3. This object may represent the
best candidate for the long-sought NIR Sgr A∗ counterpart.

In October 2000 the X-ray source at the position of Sgr A* underwent a
large-amplitude X-ray flare and a weaker flare in September 1999 (Baganoff et
al 2001a, b). In addition a cm-radio periodicity of 106 days was established
from VLA data covering the past 20 years (Zhao et al 2001). Theoretical models
(Markoff et al 2001) predict a flare K-magnitude between 8 and 13—about 0.5–
7 magnitudes brighter than the stars in the 1′′ diameter Sgr A* cluster. Such a
burst could explain the possible NIR counterpart that was reported by Genzel et
al (1997). A new extended Chandra exposure was be carried out in May 2002
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Figure 8.8. Possible stellar orbits if only the fraction of mass given in the panels is
contained in a central unresolved object. The fraction not contained in such an object
is here assumed to have a core radius of 5.8 mpc and a Plummer mass distribution with
an exponent α = 5 (see explanation in text and in the caption of figure 8.3). The stars
were launched perpendicularly to the radius vector in the plane of the sky with a velocity
of 300 km s−1 at a distance of 20 mpc from the center (Rubilar and Eckart 2000).

showing more flares. Simultaneous observations at radio to infrared wavelengths
will help to teach us more about the possible emission mechanisms associated
with bursts and quiescent emission of Sgr A*.

8.4.6 LBT and the Galactic Center

For experiments in the very near future the LBT (Large Binocular Telescope on
Mount Graham in Arizona) is ideally suited to search for and monitor the flux of
a Sgr A∗ NIR counterpart. High sensitivity combined with adaptive optics and
interferometry using the two LBT mirrors will provide the required accuracy to
separate the Sgr A∗ NIR counterpart from neighboring stars (figure 8.7). The
unprecedented combination of high sensitivity and high angular resolution over a
large field of view will allow significant motions in most of the 600 stars brighter
than mK < 14 covering the inner parsec of the central stellar cluster to be detected.
Combined with imaging spectroscopy this may result in a large number of sources
with measurements of all three velocity components. Full space velocities are
essential to improve the analysis of the dynamical properties of the late-type
stars and the inner bright higher velocity He I stars. This will undoubtedly help
to determine the origin of the He I stars which may represent the remains of a
dissolved young cluster (see Gerhard 2000). The spectra from fast moving stars
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will be of special importance. Knowing their full space velocity will result in
complete information on their orbits.

It is even more desirable to find and track the motion of stars that are as close
to the center as possible. Orbital timescales at the resolution limit of the LBT
interferometer could be in the range of a few months. A detection of a relativistic
or Newtonian periastron shift would ultimately result in a determination of the
compactness of the enclosed central mass (figure 8,8; Rubilar and Eckart 2000,
see also Eckart et al 2001, 2002). The prograde relativistic periastron rotation
is of the order of 17 arcminutes per revolution for a 60 mas (2.4 mpc; orbital
timescale 6.8 yr) orbit with an eccentricity of ε = 0.9. For a 15 mas (0.6 mpc;
orbital timescale 0.9 yr) orbit with the same eccentricity the shift is already of
the order of 1.1 degrees per revolution. Periastron shifts of 2 degrees could be
observed with the LBTI with ∼1σ yr−1.

When a small amount of the compact mass is extended the retrograde
Newtonian periastron shift would be much larger. For orbits with a half axis
as before and a modest eccentricity of ε = 0.5 the shift may amount to several
tens of degrees per revolution. This assumes that the extended mass is contained
in a compact cluster of less than 6 mpc core radius. Comparing the relative
magnitudes of the relativistic and Newtonian periastron shift one finds that if
for S2-like orbits only about 0.1% of the currently measured 3 × 106 M� is
extended the periastron shifts of the two mechanisms compensate each other.
The percentage will be higher for stars on closer orbits of similar or even higher
eccentricity.

Figure 8.9. Left: measured data points and elements of the high velocity star S2. Right:
NACO AO (adaptive optics) image from the central few arcseconds with some of the
sources labeled.
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Note added in proof

Recently the combination of the 10 years of SHARP measurements at the ESO
NTT combined with new VLT UT4 adaptive optics measurements using NACO
at the ESO VLT UT4 allowed us (Schödel et al 2002) to trace two-thirds of the
complete orbit of the star S2, currently closest to the compact radio source and
massive black hole candidate Sgr A∗. The observations confirm the result by
Eckart et al (2002) that the star is on a bound, highly elliptical Keplerian orbit
around Sgr A∗. The orbital period is 15.4 years and the distance during the peri-
center passage has been only 17 light hours. The orbital elements require an
enclosed point mass of 3.7± 1.5× 106 solar masses, which agrees well with the
mass at much larger distances. See figure 8.9.
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Chapter 9

Stars and singularities: stellar phenomena
near a massive black hole

Tal Alexander
The Weizmann Institute of Science, Rehovot, Israel

Besides the Keplerian motion of stars near to the Galactic black hole, described
in chapter 8, other detectable effects of black holes on stars and star clusters
surrounding it are discussed: stars collide, are tidally disrupted, segregate by
mass, and a stellar cusp is formed. The black hole also acts as a gravitational
lens, leading to multiple images of individual stars and apparent flares in their
luminosity. Lensing can also be used to pinpoint the position of the black hole.

9.1 Introduction

Isolated black holes are simple objects, characterized by three numbers only:
mass, angular momentum and charge. The complexity arises from their
interaction with their surroundings, which results in a wealth of physical
phenomena. This chapter will focus on the interaction of the central∼3×106 M�
massive black hole (MBH) in the Galactic Center (Genzel et al 2000) with the
stars very close to it. We will discuss processes for which there is already some
observational evidence, as well as processes that are suggested by theory and may
yet be discovered by future observations of the MBH in the Galactic Center or of
those in other galaxies.

The MBH environment is unique because in addition to the gravitational
singularity, there are three other ‘effective singularities’ that are associated with
the MBH.

(1) A stellar density singularity. This is predicted to occur in most scenarios
for the evolution of a stellar system around a MBH (e.g. Bahcall and Wolf
1976, 1977, Young 1980). A density distribution that formally diverges at
the origin is called a cusp. In practice, infinite density is not reached. Stars
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cannot exist closer than the event horizon, and in fact they are destroyed well
before that point either by collisions or by the MBH tidal field.

(2) A velocity singularity. Close to the MBH the velocity field is Keplerian and
so formally diverges as r−1/2. The velocity cusp is also limited in practice
by the absence of stars arbitrarily close to the MBH and the event horizon.

(3) An optical singularity. Any mass bends light and magnifies the flux of
background sources. Behind the MBH (or any other sufficiently compact
mass) there is a small region (a caustic) where the magnification formally
diverges to infinity. This divergence is truncated by the finite size of the
source.

The discussion will focus on the consequences of these singularities for stars
near the MBH, where the term ‘near’ is defined here to mean the region where
stars can exist (i.e. beyond the tidal radius) but where the potential is completely
dominated by the MBH. For the Galactic Center, the event horizon is much
smaller than the tidal radius (for a solar-type star) and so general relativistic effects
can be neglected to first approximation.

There are several reasons to study stars near the MBH. First, unlike gas,
whose dynamics can be influenced by non-gravitational forces such as thermal
pressure, radiation pressure and magnetic fields, stars are clean gravity probes.
The properties of stars are well known from other environments, and their
observed luminosity and spectrum can be translated into mass and maximal age.
Both these quantities are very important for understanding the dynamics of the
system. In particular, processes that operate on timescales much longer than the
maximal stellar age cannot be relevant for the star. Second, stars very near the
MBH are connected to the growth of the MBH through tidal disruption, mass loss
from stellar winds and from stellar collisions. Third, the region near the MBH
can provide a unique laboratory for studying stellar phenomena under extreme
conditions: high density, velocity and strong tidal fields.

Presently, infrared spectroscopy is possible for the brighter, well separated
stars in the field. Spectroscopy indicates that the stellar population is a mix of
old (red) stars and young (blue) stars (see review by Genzel et al 1994). The old
red giants seen near the MBH in the Galactic Center are in the mass range ∼1–
8 M� and are older than 1 Gyr. The faintest observable young blue giants may
be main sequence B1 or O9 stars with masses of ∼20 M� and main-sequence
lifetimes <5 Myr. The brightest young stars, the ‘He stars’, are Wolf–Rayet-like
stars with masses of >20 M� and lifetimes of <10 Myr. The blue stars are too
young to have relaxed dynamically, and their orbits (position, velocity) still reflect
the initial conditions of their formation (e.g. the young blue emission line giants
are observed to rotate in an opposite sense to the Galactic rotation).

All the stars in the inner 0.02 pc around Sgr A# are faint, and have blue
featureless spectra, which are typical of young stars. The fact that there are
only seemingly young stars very close to the MBH, while there is a mixture
of young and old stars farther out, raises a ‘Nature versus Nurture’ question.
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Is this an essentially random variation in the stellar population, which can be
explained in terms of normal star formation processes (‘Nature’), or is this a result
some systematic effects of the unique extreme environment very near the MBH
(‘Nurture’)? It is interesting to note that a cluster of blue stars exists also around
the ∼3× 107 M� MBH in the galaxy M31 (Lauer et al 1998).

If these stars are indeed the products of their environment, then there are two
options to consider. First, this could be the result of an unusual mechanism of
star formation (Morris 1993 and chapter 4), in which case the stars are indeed
young and dynamically unrelaxed, and so do not convey direct information on
the dynamical processes near the MBH. Second, this could be the result of
unusual stellar evolution, so that the stars only appear young, but are in fact
old and dynamically relaxed. This chapter will focus on the second possibility
(section 9.3). However, before we discuss possible mechanisms for modifying
stellar evolution, it is useful to review some results from stellar dynamics theory.

9.2 Stellar dynamics near a black hole

The stellar dynamical term ‘stellar collision’ is not limited to the case of actual
physical contact between stars, but refers to any gravitational interaction where
the stars exchange momentum or energy. The dynamical processes in a gravitating
stellar system can be summarized by classifying stellar collisions according to
their distance scale. The reader is referred to Binney and Tremaine (1987) for a
detailed treatment of this subject.

On the largest scale, the motion of a star is determined by the sum of
interactions with all the other stars, that is, by the smooth gravitational potential
of the system. Two-body interactions occur on a shorter length scale, when two
stars approach each other to the point where their mutual interaction dominates
over that of the smoothed potential. Two-body interactions randomize the stellar
motions and lead to the relaxation of the system. In the course of relaxation,
the stars, whose mass range spans two to three orders of magnitude, are driven
towards equipartition. However, equipartition cannot be achieved in the presence
of a central concentration of mass (in particular a central MBH). When two
stars, which are initially on the same orbit (and therefore have the same velocity)
interact, the massive one will slow down and the lighter one will speed up. Since
the radius of the orbit depends only on the star’s specific energy, and not its total
energy, the massive star will sink to the center, while the lighter star will drift
outwards. Over time, this process leads to ‘mass segregation’—the more massive
stars are concentrated near the MBH and the lighter stars are pushed out of the
inner region.

Occasionally, two-body interactions will eject a star out of the system
altogether, thereby taking away positive energy from the system. The system
will then become more bound and compact, the collision rate will increase, more
stars will be ejected, and the result will be a runaway process. This process is
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called the ‘gravothermal catastrophe’, or ‘core collapse’, and is linked to the fact
that self-gravitating systems have a negative heat capacity—they become hotter
when energy is taken out. Core collapse, if unchecked, will lead to the formation
of an extremely dense stellar core surrounded by a diffuse extended halo.

Once the density becomes high enough, very short-range inelastic collisions
are no longer extremely rare, and the fact that the stars are not point masses but
have internal degrees of freedom starts to play a role. In such collisions energy is
extracted from the orbit and invested in the work required to raise stellar tides, or
strip stellar mass. The tidal energy is eventually dissipated in the star and radiated
away. If the collision is slow, as it is in the core of a globular cluster where there
is no MBH (but see Gebhardt et al 2002 for evidence for a black hole in a globular
cluster), then the typical initial orbit is just barely unbound. In this case, the tidal
interaction may extract enough orbital energy for ‘tidal capture’, and lead to the
formation of a tightly bound, or ‘hard’ binary (tight, because tidal forces become
effective only when the two stars are very close to each other). Hard binaries are a
heat source for the cluster and play a crucial role in arresting core collapse. When
a third star collides with a hard binary, it will tend to gain energy from the binary,
thereby injecting positive energy into the cluster, while the binary becomes harder
still.

When the stars orbit a central MBH, the collisions are fast (the Keplerian
velocity near the MBH exceeds the escape velocity from the star) and the initial
orbits are very unbound (hyperbolic). Even very close fly-bys cannot take enough
energy from the orbit to bind the two stars, and so they continue on their way
separately after having extracted energy and angular momentum from the orbit.
The stars can radiate away the excess heat on a timescale shorter than the mean
time between collisions, but it is harder to get rid of the excess angular momen-
tum. Magnetic braking (the torque applied to a star when the stellar wind resists
being swept by the rotating stellar magnetic field) typically operates on timescales
similar to the stellar lifetime. It is therefore likely that high rotation is the longest-
lasting dynamical after effect of a close hyperbolic encounter, and that stars in a
high density cusp are spun up stochastically by repeated collisions (section 9.3.2).
Finally, at zero range, almost head-on stellar collisions can lead to the stripping
of stellar envelopes (section 9.3.1), the destruction of stars, or to mergers that re-
sult in the creation of ‘exotic stars’. These are stars that cannot be formed in the
course of normal stellar evolution, such as a Thorne–Zytkow object, which is an
accreting neutron star embedded in a giant envelope (Thorne and Zytkow 1975).

9.2.1 Physical scales

There are several important timescales and length scales that govern the dynamics
of the stellar system and MBH. They are listed here with estimates of their value
in the Galactic Center. A solar-type star and M• = 3 × 106 M� (Genzel et
al 2000) are assumed throughout. Physical lengths are also expressed as angular
sizes assuming that the distance to the Galactic Center is R0 = 8 kpc (Reid 1993).



250 Stars and singularities: stellar phenomena near a massive black hole

9.2.1.1 Timescales

The dynamical time, or orbital time, td, is the time it takes a star to cross the
system

td ∼ r

v
∼ 2π

√
r3

GMtot
∼ 2× 105 yr (at 3 pc) ∼ 300 yr (at 0.03 pc) (9.1)

where r is the typical size of the system and Mtot is the total mass enclosed in
radius r .

The two-body relaxation time, tr , is related to the 1D velocity dispersion σ ,
the mean stellar mass 〈M#〉 and the stellar number density n# by

tr ∼ 0.34σ 3

G2〈M#〉2n# ln�
∼ 109 yr (9.2)

where log� is the Coulomb logarithm, the logarithm of the ratio between
the largest and smallest impact parameters possible in the system for elastic
collisions. Because the relaxation timescale in the Galactic Center is shorter than
the age of the Galaxy (∼10 Gyr), the old stars are expected to be well relaxed by
now.

The mass segregation timescale is of the same order as the relaxation
timescale,

tseg ∼ tr. (9.3)

The rate (per star) of grazing collisions between two stars of mass and radius
Ma
# , Ra

# and Mb
# , Rb

# , each, is

t−1
c = 4

√
πn#σ (R

a
# + Rb

# )
2

[
1+ G(Ma

# + Mb
# )

2σ 2(Ra
# + Rb

# )

]
∼ 10−9 yr−1 ( at 0.03 pc)

(9.4)
where it is assumed that the stars follow a mass-independent Maxwell–Boltzmann
velocity distribution with velocity dispersion σ (this is a good approximation
near the MBH, see section 9.2.2). There are two contributions to the total
rate, one due to the geometric cross section (first term in the square brackets)
and one due to ‘gravitational focusing’ (second term in the square brackets).
Gravitational focusing expresses the fact that the two stars do not move on straight
lines, but are attracted to each other. This effect is important when the typical
stellar velocities are much smaller than the escape velocity, ve, from the stars,
σ 2 < GM#/2R# = v2

e /4.

9.2.1.2 Length scales

The size of the event horizon of a non-rotating black hole, the Schwarzschild
radius, is

rS = 2GM•
c2

= 9× 1011 cm ∼ 3× 10−7 pc ∼ 8 µarcsec. (9.5)
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The tidal radius, rt, is the minimal distance from the MBH where the stellar
self-gravity can still resist the tidal forces of the MBH. If the star’s orbit takes it
inside the tidal radius, it will be disrupted, and roughly half of its mass will fall
into the MBH, while the other half will be ejected (e.g. Ayal et al 2000). The
exact value of the tidal radius depends on the stellar structure and the nature of
the orbit, and up to a factor of order unity is given by

rt ∼ R#

(
M•
M#

)1/3

= 1013 cm ∼ 3× 10−6 pc ∼ 80 µarcsec. (9.6)

Tidal disruption is relevant as long as the tidal radius lies outside the event
horizon. Since rt ∝ M1/3• , while rS ∝ M•, there exists a maximal MBH mass for
tidal disruption, which for a solar-type star is ∼108 M�.

The radius of influence, rh, is the region where the MBH potential dominates
the dynamics. If the MBH is embedded in an isothermal stellar system (i.e. σ is
constant), then the radius of influence can be defined as

rh = GM•
σ 2 ∼ 1019 cm ∼ 3 pc ∼ 80 arcsec. (9.7)

In practice, the distribution is not isothermal and σ is not constant, and so rh is
evaluated loosely by choosing a representative value of σ far enough from the
MBH. The stellar mass enclosed within rh is of the same order as the mass of the
MBH.

9.2.2 A relaxed stellar system around a MBH

The relaxed, quasi steady-state density distribution of a single-mass stellar
population around a MBH is (Bahcall and Wolf 1976, see also Binney and
Tremaine 1987 for a simple derivation)

n# ∝ r−7/4. (9.8)

When the stellar population consists of a spectrum of masses, M1 < M# < M2,
the stellar distribution function (DF) very near the MBH has the form (Bahcall
and Wolf 1977)

fM (ε) ∝ ε pM n# ∝ r−3/2−pM pM ≡ M

4M2
(9.9)

where −ε is the total specific energy of the star and fM ≡ 0 for ε < 0. The
velocity dispersion of this DF (see equation (9.12)) is almost independent of the
stellar mass,

σ 2
M =

(
1

5/2+ pM

)
GM•

r
(9.10)

which implies that σ 2
M changes by less than 10% over the entire mass range,

in marked contrast to the σ 2
M ∝ M−1

# dependence of equipartition. This result
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Tightly bound

Circular

Unbound

Figure 9.1. A schematic representation of the different types of stellar orbit that can be
observed in a small region near the MBH.

justifies the approximation that the velocity dispersion in a relaxed stellar system
around a MBH is mass independent.

The Bahcall–Wolf solution applies to point particles. This assumption no
longer holds very near the MBH, where the collision rate is high because of the
very high stellar density. Stars on tight orbits around the MBH cannot survive for
long, and so eventually most of the population there will consist of stars that are on
very wide, marginally bound (parabolic) orbits, which spend only a small fraction
of their time in the collisionally dominated region. These marginally bound stars
have a flatter spatial distribution, of the form (e.g. Binney and Tremaine 1987,
p 551)

n# ∝ r−1/2. (9.11)

The stars in any volume element near the MBH have a distribution of orbits
(figure 9.1): some are more bound than circular (i.e. their velocity is smaller than
the circular velocity vc), some are less bound than circular, some are unbound to
the MBH (but bound by the total mass of the MBH and stars). The distribution of
orbits is directly tied to the spatial distribution through the Jeans equation,

GM•
rσ 2

= v2
c

σ 2
= −d ln n#

d ln r
− d ln σ 2

d ln r
. (9.12)

The Jeans equation is essentially a re-statement of the continuity equation of the
stellar orbits in phase space in terms of averaged quantities, the mean stellar
density and velocity dispersion. Here it is given for the simplest case of a steady-
state, isotropic, non-rotating system. The steady-state assumption is justified
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0
0

df
/d

v

v/σ

vc/σ ve/σ

Figure 9.2. The fraction of orbits in the Maxwell–Boltzmann distribution as a function of
the normalized velocity v/σ . The circular velocity vc and the escape velocity ve =

√
2vc

are marked for a density distribution with α = 1.5. The region v > ve lies under the
exponential tail of the DF, and so the fraction of stars with unbound orbits is a strongly
decreasing function of α.

because the dynamical timescale is much shorter than the relaxation timescale.
The assumptions of approximate isotropy and non-rotation are observationally
justified.

Very near the MBH the velocity dispersion is Keplerian, σ 2 ∝ r−1, and so
for any power-law cusp n# ∝ r−α , the Jeans equation implies that

v2
c

σ 2
= α + 1. (9.13)

The steeper the cusp (larger α) is the larger the ratio between vc and σ , and so the
fraction of loosely bound stars or unbound stars is smaller (figure 9.2). Because
unbound stars have wide orbits and spend most of their time far away from the
MBH, the stellar population in a shallow cusp is well mixed and representative of
the average population over a large volume. In contrast, the stellar population in
a steep cusp is localized and can therefore develop and maintain properties that
differ from those of the general population.

9.3 The stellar collider in the Galactic Center

The potential for probing a new regime of stellar dynamics near the MBH in the
Galactic Center is best illustrated by comparing the collisional timescale there
with that in the cores of the densest globular clusters, which for a long time
served as laboratories for the study of collisional processes. In a dense globular
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cluster, n# ∼ 106 M� pc−3 and σ ∼ 10 km s−1, whereas in the Galactic
Center, the density may be as high as n# ∼ 108 M� pc−3 (section 9.3.1) and
σ ∼ 1000 km s−1. The timescale for collisions between solar-type stars in a
globular cluster can be estimated from equation (9.4) to be almost 1010 yr, roughly
the age of the Galaxy and of a solar-type star, whereas it is only∼5×108 yr in the
inner 0.02 pc of the Galactic Center. These estimates imply that while physical
collisions are only marginally relevant in the cores of the densest globular clusters,
they completely dominate the dynamics in the innermost part of the MBH cusp1.

9.3.1 The case for a dense stellar cusp in the Galactic Center

Theoretical considerations lead us to expect a relaxed stellar cusp around the
MBH in the Galactic Center. Does such a cusp indeed exist there? The answer
depends critically on the problem of identifying which of the observed stars are
dynamically relaxed, since only those faithfully trace the underlying old stellar
population. The analysis presented here shows that it is possible to interpret the
available observations self-consistently in the framework of a high density cusp.
However, the reader should keep in mind that the issue is an empirical one and, as
such, may be subject to revisions when more and better data are obtained about
the stars near the MBH.

Direct evidence for the existence of a cusp comes from the analysis of star
maps, which show a concentration of stars toward the center. Assuming a 3D
density distribution of the form n# ∝ r−α , the corresponding projected 2D surface
density can be compared to the observed distribution to find the most likely value
of α. Figure 9.3 shows the likelihood curves for α based on three independent
star maps, after all the stars that were spectroscopically identified as young were
taken out of the sample (the faint blue stars nearest to Sgr A# are included only
in the Keck data set, but not in the other two). The most likely value for the
density power-law index α lies in the range ∼1.5–1.75. A flat core (α ∼ 0), such
as exists in globular clusters, is decisively rejected. Similarly, a likelihood test
for the maximal size of a flat inner core indicates that such a core, if it exists, is
smaller than ∼0.1 pc (2.5′′). It can be shown that extinction by interstellar dust is
unlikely to bias these results by a significant amount.

Additional evidence for the existence of a very high density cusp comes from
the observed gradual depletion of the luminous giants toward the MBH in the
inner 0.1 pc (figure 9.4). Luminous red giants have very large extended envelopes,
and therefore a large cross section for collisions with other stars. When the impact
parameter is a small fraction of the giant’s radius, the envelope may be stripped,
leaving behind an almost bare burning core. This will make the star effectively
invisible in the infrared (IR) because the IR spectral range lies in the Rayleigh–
Jeans part of the stellar blackbody spectrum, and so the IR luminosity scales as
LIR ∝ R2

#Teff while the total luminosity scales as L# ∝ R2
#T 4

eff. Suppose that

1 The probability for avoiding a collision over a time t is exp(−t/tc).
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Figure 9.3. A maximum likelihood analysis of the surface density distribution of stars
near Sgr A# for a 3D stellar density distribution n# ∝ r−α (Alexander 1999). Three
different data sets (Blum et al 1996, Genzel et al 1996, Eckart and Genzel 1997, Ghez et
al 1998) indicate that the most likely value for α lies in the range ∼3/2 to ∼7/4, which is
the theoretically predicted range for a relaxed stellar system around a MBH (Bahcall and
Wolf 1977). Order of magnitude estimates (section 9.2.1) suggest that the stellar system
around the MBH in the Galactic Center has undergone two-body relaxation. (Reprinted
with permission from The Astrophysical Journal.)

the collision disperses the envelope of a ∼100 R� red supergiant and leaves a
∼1 R� burning core. In order to maintain the total stellar luminosity, the effective
temperature will have to rise by a factor of 10, which will result in a decrease of
the IR luminosity by a factor of 1000 (7.5 magnitudes).

Figure 9.4 compares a theoretical prediction for the collisional depletion of
luminous giants with the data. The match with the observed trend is remarkably
good, given the fact that no attempt was made to fit the data. The calculation is
based on detailed modeling of expected numbers, sizes, luminosities and lifetimes
of giants in the population, on cross sections for envelope disruption that were
calibrated by hydrodynamical simulations, and on a stellar density cusp that is
normalized by dynamical estimates of the enclosed mass.

It should be noted that the total mass loss rate from these collisions is smaller
than that supplied by the strong stellar winds of the blue supergiants in the inner
few arcseconds, and so stellar collisions are not a dominant source of mass supply
to the MBH at this time.
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Figure 9.4. Evidence for collisional destruction of bright giant envelopes in a high-density
stellar cusp around the MBH in the Galactic Center (Alexander 1999). The apparent stellar
K-band magnitude is plotted against the projected angular distance from the black hole, p
(Keck data from Ghez et al 1998). The ages of the stars marked by circles are unknown, but
it is likely that most of them are old, and therefore dynamically relaxed. Stars marked by
‘L’ are spectroscopically identified as old stars. Stars marked by ‘H’ are spectroscopically
identified as young stars and are not dynamically relaxed. Such stars are not expected to
be affected by collisions because of their short lifetimes. The stars marked by ‘E’ have
featureless blue spectra and are either young stars or old stars that were affected by the
extreme conditions very near the black hole. The three contour lines represent detailed
model predictions for the decrease in surface density of bright stars due to collisional
destruction in a high density n# ∝ r−3/2 stellar cusp. The stellar density reaches a
value of ∼4 × 108 M� pc−3 at r = 0.25′′ (0.01 pc), which is nine orders of magnitude
higher than in the Solar Neighborhood, and almost three orders of magnitude higher than
in the densest globular cluster core. The model predicts, on average, 1.5 (top contour), 1.0
(central contour), and 0.5 (bottom contour) dynamically relaxed stars per 0.25 arcsecond
bin that are brighter than the contour level. This is consistent with the observed trend in the
surface density distribution. (Reprinted with permission from The Astrophysical Journal.)

The self-consistent picture that emerges from this analysis is that the stars
near the MBH in the Galactic Center, which are expected to be dynamically
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relaxed, are indeed concentrated in a stellar cusp of the form predicted by theory
for a relaxed system. The very high stellar density in the inner few 0.01 pc leads
to frequent collisions that destroy the envelopes of giant stars, thereby explaining
the gradual depletion in the number of luminous giants toward the center. The
central cluster of faint blue stars in the inner 0.5′′ coincides with the collisionally
dominated region. It is therefore relevant to consider dynamical explanations
for their nature and appearance as an alternative to assuming that they are newly
formed, unrelaxed stars. The concentration of such a distinct population in a small
volume is consistent with the tightly bound orbits that are typical of a steep cusp
(section 9.2.2).

9.3.2 Tidal spin-up

It is inevitable that in a system where the stellar density is high enough for
collisional destruction of giants, smaller stars that escape destruction will still
suffer very close encounters. As described earlier (section 9.2), usually such
collisions cannot bind the two stars, and the longest lasting after effect, apart
from possible mass loss, is fast rotation. Fast rotation and mass loss have the
potential to affect stellar evolution and modify the appearance of the stars (see the
discussion in Alexander and Kumar 2001, Alexander and Livio 2001). Although
detailed predictions of the observational consequences are still not available, it is
of interest to estimate the magnitude of the spin-up effect.

When the tidal deformations in the star are small, the change in the angular
velocity of a star of mass M# and radius R# due to an encounter with a mass M can
be described by a linear multipole expansion in the periapse distance rp (distance
of closest approach) by (Press and Teukolsky 1977)

��̃ = M̃2

Ĩ ṽp

∞∑
l=2

Tl(η, e)

r̃2l+1
p

(9.14)

where the tilde symbol denotes quantities measured in units where G = M# =
R# = 1, and rigid body rotation is assumed. ṽp is the relative velocity at periapse,
Ĩ is the star’s moment of inertia, and Tl the tidal coupling coefficient of the lth
moment. In these units, �̃ = 1 is the centrifugal breakup angular velocity, where
the star sheds mass from its equator. The tidal coupling coefficients depend on the

star’s structure, on the orbital parameters through the quantity η = r̃3/2
p /

√
1+ M̃ ,

and on the orbital eccentricity e. The tidal coefficient Tl can be calculated
numerically for any given stellar model and orbit.

The formal divergence of ��̃ as r̃p decreases indicates that most of the
contribution comes from close collisions, where the linear analysis breaks down.
The nonlinear processes, which truncate the divergence, have to be investigated by
hydrodynamical simulations (see section 9.3.3). These reveal that as r̃p decreases
towards 1,��̃ first increases faster than predicted by the linear analysis, but then
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Figure 9.5. The average spin-up of a solar-type star by star–star tidal interactions over
10 Gyr as a function of distance from the black hole in the Galactic Center (Alexander
and Kumar 2001). An α = 1.5 density cusp is assumed. The rotation grows over time
in a random walk fashion by repeated close passages. δ�̃ = 1 corresponds to rotation at
the centrifugal break-up velocity. In addition to the total spin-up, the separate contributions
from collisions with main sequence stars (MS), white dwarfs (WD), neutron stars (NS) and
stellar black holes (BH) are shown. (Reprinted with permission from The Astrophysical
Journal.)

it reaches a maximal value at the onset of mass loss, since the ejecta carry away
the extra angular momentum.

Over its lifetime, a star will undergo many tidal encounters, randomly
oriented relative to its spin axis, and will be spun up in a random walk manner.
The cumulative effect can be large. Figure 9.5 shows the predicted average spin-
up of solar-type stars over 10 Gyr in the Galactic Center as a function of distance
from the MBH (Alexander and Kumar 2001). The calculation assumes an α = 1.5
density cusp, a model for the distribution of stellar masses in the population,
and inefficient magnetic braking. On average, solar-type stars in a large volume
around the black hole are spun up to 10%–30% of the break-up angular velocity,
or 20 to 60 times faster than is typical in the field. The effect falls off only
slowly with distance because the higher efficiency of tidal interactions in slower
collisions far from the black hole offsets the lower collision rate there.
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9.3.3 Tidal scattering

Tidal scattering is another mechanism that can affect the internal structure of a
significant fraction of the stars around the MBH. Unlike the tidal spin-up process
discussed in section 9.3.2, tidal scattering does not require a very high stellar
density, since it is driven by the global response of the system to the existence of
a mass sink, the MBH, in its center.

Some of the mass that feeds the growth of a MBH in a galactic center is
supplied by tidal disruption of stars that are scattered into low angular momentum
orbits (‘loss-cone’ orbits). When the MBH mass is small enough that the tidal
radius is larger than the event horizon, rt > rs, the star is tidally disrupted before
crossing the event horizon. The accretion of stellar debris from such events may
give rise to observable ‘tidal flares’ (Frank and Rees 1976). Significant theoretical
efforts have gone into estimating the rates, timescales, luminosities and spectra of
the flares (e.g. Ulmer et al 1998, Magorrian and Tremaine 1999, Ayal et al 2000),
in the hope that they can be used to detect MBHs in the centers of galaxies. There
is today only marginal evidence for the detection of such flares (e.g. Renzini et al
1995, Komossa and Bade 1999, Komossa and Greiner 1999).

The effect of the MBH’s tidal field is not limited to tidal disruption. For
every star that is actually disrupted, there are stars with rp � rt that narrowly
escape tidal disruption by the central BH after being subjected to extreme tidal
distortion, spin-up, mixing and mass loss, which may affect their evolution and
appearance (Alexander and Livio 2001). Figure 9.6 shows a Smoothed Particle
Hydrodynamics2 (SPH) simulation of a star passing by a MBH just outside the
tidal disruption radius. To leading order, the effects of tidal scattering are a
function of the penetration parameter β = rt/rp only, and are independent of
the MBH mass,

��̃ � T2(β
−3/2)√
2 Ĩ

β9/2 (9.15)

which follows from equation (9.14) for a parabolic orbit and for M• � M#.
As will be argued later, a large fraction of these ‘tidally scattered’ stars survive
eventual orbital decay and disruption, and so remain in the system as relics of
the epoch of tidal processes even after the MBH becomes too massive for tidal
disruption.

Dynamical analyses of the scattering of stars into the loss-cone orbits
(Lightman and Shapiro 1977, Magorrian and Tremaine 1999) show that tidally
disrupted stars in galactic nuclei are typically on slightly unbound orbits relative to

2 SPH is a numerical algorithm for simulating the hydrodynamics of 3D self-gravitating fluids, which
is commonly used in the study of stellar collisions (Monaghan 1992). The star is represented by
discrete mass elements, each distributed smoothly over a small sphere so that its density peaks in the
center and falls to zero at the edge. The total density at a point is the sum of densities in all overlapping
spheres that include the point. The resulting density field is continuous and differentiable, and so its
thermodynamic properties can be evaluated everywhere once an equation of state is specified. Every
time step, the positions of the mass elements are updated according to the gravitational force and the
pressure gradient, and the sphere sizes are readjusted to reflect the changes in the local density.
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Figure 9.6. Snapshots from a Smoothed Particle Hydrodynamics (SPH) simulation of a
star undergoing an extreme non-disruptive tidal interaction (‘tidal scattering’) as it passes
near a massive black hole. Time is measured in units of the star’s dynamical timescale.
The star passes near the black hole (located outside the frame) on a parabolic orbit with
a peri-distance 1.5 times larger than the tidal disruption distance. Shortly after periapse
passage (t = 12) the star appears to be on the verge of breaking in two. However, by the
end of the simulation, the two fragments coalesce, leaving a distorted, mixed and rapidly
rotating bound object.

the MBH and that they are predominantly scattered into the loss-cone from orbits
at the radius of influence of the BH, rh. The scattering operates on a timescale that
is shorter than the dynamical timescale, and so the stars are scattered in and out
of the loss-cone several times during one orbital period. Because of gravitational
focusing, the cross section for scattering into a hyperbolic orbit with periapse≤ rp
scales as rp, and not as r2

p (Hills 1975, Frank 1978), and so the number of stars
with rt ≤ rp ≤ 2rt equals the number of stars that were disrupted by the MBH.

Tidal disruption is an important source of mass for a low-mass MBH that
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accretes from a low-density galactic nuclear core, where mass loss from stellar
collisions is small (e.g. Murphy et al 1991). For the MBH in the Galactic Center,
the total mass in disrupted stars can be 0.25M• or even higher (Freitag and Benz
2002). Since the enclosed stellar mass within rh is also ∼M•, the tidally scattered
stars comprise a significantly high fraction of the stellar population within the
radius of influence of the MBH.

After the first periapse passage, the tidally scattered star will be on a very
eccentric orbit with a maximal radius (apoapse) of �2rh. Since the two-body
interactions that scattered it into the eccentric orbit operate on a timescale that is
shorter than the orbital period, there is a significant chance that the star will be
scattered again off the orbit and miss the MBH. The chance of this happening is
further increased by the Brownian motion of the MBH relative to the dynamical
center of the stellar system. The amplitude of the Brownian motion is much
larger than the tidal radius, and it proceeds on the dynamical timescale of the
core (Bahcall and Wolf 1976), which is comparable to the orbital period of the
tidally disturbed stars. The orbits of the tidally scattered stars take them outside
of rh, where they are no longer affected by the relative shift between the BH and
the stellar mass. Therefore, on re-entry into the volume of influence, their orbit
will not bring them to the same periapse distance from the MBH (figure 9.7). Both
the random motion of the MBH and the scattering off the loss-cone by two-body
interactions are expected to increase the survival fraction to a significantly high
value. More detailed calculations, which integrate over the orbital distribution,
are required to confirm these qualitative arguments.

Rough estimates (Alexander and Livio 2001) indicate that the Galactic
Center may harbor 104−5 tidally scattered stars. These stars are expected to be on
highly eccentric orbits, and so there may be observable correlations between high
orbital eccentricity and the stellar properties.

9.4 The gravitational telescope in the Galactic Center

The MBH in the Galactic Center is a telescope with a lens of effective diameter
∼4 × 1017 cm (for a source at infinity) and a focal length of ∼2.5 × 1022 cm.
Unfortunately, Nature did not design it as an ideal telescope. A point mass lens
does not produce faithful images of the lensed sources, the optical axis is heavily
obscured by interstellar dust, and the telescope points in a fixed direction, which
is not of our choosing. In fact, various estimates suggest that there are not enough
luminous sources in that direction for gravitational lensing to be important for
present day observations, although future, deep observations may pick up lensing
events (Wardle and Yusef-Zadeh 1992, Alexander and Sternberg 1999, Alexander
and Loeb 2001). Nevertheless, it is worthwhile to consider the possible roles of
gravitational lensing in the observations and the study of the Galactic Center. This
is important not only in anticipation of future observations, but also because the
estimates of the lensing probability are quite uncertain (they involve models of
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Figure 9.7. A schematic representation of the tidal scattering process. A star initially
orbiting the MBH at the radius of influence is scattered by a two-body encounter into an
extremely eccentric orbit that brings it to the tidal scattering zone just outside the tidal
disruption radius. The star suffers an extreme, non-disruptive tidal interaction with the
MBH, and continues on its way out of the radius of influence, where it is scattered by
frequent two-body encounters. In the meanwhile, the Brownian motion of the MBH due
to its interactions with the stellar system causes it to move away from its original position.
Both these random processes significantly increase the chances of the tidally disturbed star
surviving total disruption during subsequent orbits.

the unobserved far side of the Galaxy), and because there are hints that lensing
may not be quite as rare as predicted (section 9.4.2).

Gravitational lensing may be used to probe the dark mass (is it really a
MBH?) and the stars around it, and to locate the MBH on the IR grid, where
the stars are observed. However, gravitational lensing can also complicate the
interpretation of the observations since it affects many of the observed properties
of the sources: flux, variability, apparent motion and surface density. IR flares
due to lensing can be confused with those due to fluctuations in the accretion flow,
and lensed images of background sources far behind the MBH can be confused
with stars that are truly near the MBH. This section will focus on aspects of
gravitational lensing that are or may be relevant for the Galactic Center. The
reader is referred to Schneider et al (1992) for a comprehensive treatment of the
subject.
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9.4.1 Gravitational lensing by a point mass

To a first and good approximation the lensing properties of the mass distribution in
the Galactic Center can be described as those of a point mass, the MBH. Figure 9.8
shows the light ray diagram of lensing by a point mass in the small-angle limit.
The bending angle is given by

α = 4GM•
c2b

(9.16)

where b is the impact parameter of the light ray with respect to the lens. Note
that unlike a spherical glass lens, where the bending angle is zero when the ray
goes through the lens center and increases with the impact parameter, the bending
angle of a gravitational lens diverges toward the center and decreases with the
impact parameter. It is therefore not surprising that a gravitational lens does not
produce a faithful image of the lensed source, but rather breaks, warps and/or
flips the image. A point lens creates two images of the source, one on either
side of the lens. There are always two images in focus at the observer, regardless
of the distance of the source behind the lens. The two images, the lens and the
(unobserved) source all lie on one line. The typical angular cross section of the
lens is given by the Einstein angle,

θ2
E =

4GM•
c2

DLS

DOS DOL
(9.17)

where DOL is the observer–lens distance, DLS is the lens–source distance, and
DOS is the observer–source distance3.

The relation between the angular position of the source relative to the
observer–lens axis (the optical axis) can be derived from the geometry of the light
paths,

y = x1,2 − 1/x1,2 (9.18)

where x1,2 and y are measured in terms of θE and where x2 < 0 by definition.
Gravitational lensing conserves surface brightness, and so the magnifications A1,2
in the flux of each image relative to that of the unlensed source are proportional
to change in the angular area of the source,

A1,2 =
∣∣∣∣ ∂−→y∂−→x 1,2

∣∣∣∣−1

= |1− x−4
1,2|−1. (9.19)

The primary image at x1 is always magnified. The secondary image at x2 can be
demagnified to zero. The two magnifications obey the relations

A1 = A2 + 1 ≥ 1 (9.20)
3 In flat spacetime, which is relevant for Galactic lensing, DOS = DOL+ DLS. In curved spacetime,
which is relevant for cosmological lensing, the distances are the angular diameter distances, and this
simple sum no longer holds.
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Figure 9.8. The light ray diagram for lensing by a point mass. The light rays from a
source, at angular position y relative to the observer–lens optical axis, are bent by the
gravitational lens and reach the observer from angles x1 and x2, thereby appearing as two
images. Unlike a spherical glass lens, the light bending angle α of a gravitational lens is
inversely proportional to the impact parameter to the lens (equation (9.16)).

and

A ≡ A1 + A2 = y2 + 2

y
√

y2 + 4
. (9.21)

When y = 0 the magnification formally diverges and the image appears as a ring
of angular size θE, the Einstein ring. This divergence is avoided in practice by
the finite size of the source (e.g. a star). Finite-sized sources are also sheared
tangentially around the Einstein ring as the magnification increases. In the limit
of high magnification or small source angle,

A ∼ 1/y (y � 1). (9.22)

9.4.2 Pinpointing the MBH with lensed images

Determining the exact position of the MBH on the IR grid is important because
the radio source Sgr A#, which is associated with the MBH, has been detected
to date only in one other band, the X-ray (Baganoff et al 2001). Currently, the
IR position of the radio source Sgr A# is derived indirectly by aligning the radio
and IR maps using four maser giants in the inner 15′′, which are observed in both
bands (Menten et al 1997). The exact IR position of the MBH is required, for
example, for measuring the IR flux from the MBH, in order to constrain accretion
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models; for solving the stellar orbits around the MBH, in order to measure M• and
R0 (Jaroszyński 1999, Salim and Gould 1999) and to search for general relativistic
effects (Jaroszyński 1998, Fragile and Mathews 2000; Rubilar and Eckart 2001);
and for detecting the fluctuations of the MBH away from the dynamical center of
the stellar cluster, in order to study the stellar potential. Recent measurements of
the acceleration vectors of three stars very near Sgr A# provide another way of
locating the MBH (Ghez et al 2000). The IR/radio alignment and the center of
acceleration are close, but do not overlap (figure 9.10), and neither coincide with
an IR source. Gravitational lensing can provide a third, independent method for
locating the MBH.

When the source, lens and observer move relative to each other, the positions,
velocities and magnifications of the images will change with time (figure 9.9).
In addition to the requirement that the two images and the lens lie on one line,
equations (9.18) and (9.19) imply that the measured angular positions of the two
images θ1,2, their projected transverse velocities vt1,2 and radial velocities vr1,2
relative to the lens, and their measured fluxes F1,2, should obey the simple relation

−θ1/θ2 = vt1/vt2 = −vr1/vr2 =
√

F1/F2. (9.23)

The constraints are based solely on observables, and so are independent of any
assumptions about M•, R0 or the properties of the lensed background sources.
The use of equation (9.23) does require knowledge of the exact position of the
MBH relative to the stars, since this is needed for measuring the angular distances
and for decomposing the radial and tangential components of the velocity. If the
MBH position is known, equation (9.23) can be used to search in astrometric
measurements of positions, fluxes and velocities for pairs of lensed images around
the MBH. Equation (9.23) can also be used to find the position of the MBH on
the IR grid, since the MBH lies on the line connecting the two images, and so the
intersection of these lines pinpoints its position. This can be done statistically, by
enumerating over a grid of trial positions for the MBH, and choosing as the most
likely one that which maximizes the number of lensed image pairs.

Figure 9.10 shows the results from such a joint statistical search for the MBH
and for a signature of lensing (Alexander 2001). The most likely position of the
MBH coincides with the center of acceleration. The random probability for such
a likelihood extremum is 0.01. The random probability for such an extremum
to fall in either the 1σ error range of IR/radio alignment or that of the center of
acceleration is 5× 10−4.

The search for the MBH yields also a list of candidate lensed image pairs.
The definitive test of lensing is to compare their spectra, which should be identical
up to differences due to non-uniform extinction. Unfortunately, spectra for the
fainter secondary images are unavailable at this time. Once M•, R0 and the
dust distribution in the Galaxy are assumed, it is possible to derive, albeit with
very large uncertainty, the luminosity and distance of the candidate sources.
The sources of the two most likely lensed image pair candidates are luminous
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Figure 9.9. A sequence of snapshots simulating the observation of lensing of a background
point source by the MBH. Time is in arbitrary units. The background source, which is
not observed directly (open circle with straight line tracking the source trajectory) moves
in projection from left to right behind the MBH (open circle at center) with an impact
parameter of 0.1θE. The two images (light points with curved lines tracking the image
trajectories) move in tandem clockwise about the Einstein ring (large dotted circle). The
strongly magnified image (top) is always outside the Einstein ring and is always brighter
than the source. The weakly magnified image (bottom) is always inside the Einstein ring
and can be strongly demagnified (panels a, b). At peak magnification (panel c) the two
images are of comparable brightness (equation (9.20)).

supergiants, a blue supergiant a few kpc behind the Galactic Center and a red
supergiant at the far edge of the Galaxy.

This statistical result, while intriguing, requires additional confirmation.
Simple models of the distribution of light and dust in the Galaxy predict that the
chances of finding luminous supergiants right behind the MBH are very small,
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Figure 9.10. Pinpointing the MBH on the IR grid with gravitationally lensed stars
(Alexander 2001). A gray scale plot of the logarithm of the likelihood of the MBH position
(shifted to 0 at the maximum), for 116 stars from the astrometric compilation by Genzel
et al (2000), as a function of the shift in the astrometric grid over the central 0.3′′ × 0.3′′
search field. The cross in the center is the origin according to the IR/radio alignment
with its 1σ error circle (Menten et al 1997). The polygon is the ∼1σ error region for the
center of acceleration (Ghez et al 2000). The circles are the observed IR sources with their
10 mas error circles. The most likely position of the MBH is indicated by a plus sign with
1σ and 2σ confidence level contours. (Reprinted with permission from The Astrophysical
Journal.)

and the statistical analysis depends sensitively on the quality of the data and its
error properties. Whether or not this particular result survives further scrutiny,
it illustrates the potential of gravitational lensing as a tool for the study of the
Galactic Center. This statistical method for locating the MBH by gravitational
lensing should be re-applied whenever deeper astrometric data become available.

9.4.3 The detection of gravitational lensing

The mode of detection of lensing events depends on the telescope’s angular
resolution and its photometric sensitivity. When the two images can be
resolved, as in the case discussed in section 9.4.2, the phenomenon is called
a ‘macrolensing’ event. When the two images cannot be resolved, only the
variability in the flux of the lensed source is observed. This is called a
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‘microlensing’ event. Since θE increases with source distance behind the lens,
there is a maximal source distance for microlensing, Dµ, which can be estimated
by noting that the angular distance between the two images close to peak
magnification is ∼2θE, and so

Dµ = DOL

(θ∞/φ)2 − 1
(9.24)

where φ is the telescope’s angular resolution, θ∞ ≡ √
4GM•/c2 DOL ∼ 1.75

′′
is

the Einstein angle for a source at infinity, and it is assumed that φ < θE is the
criterion for resolving the two images.

The light curve for a constant velocity trajectory of a background source in
the plane of the sky is given by substituting y(t) in equation (9.21),

y2(t) = y2
0 + µ2(t − t0)

2 (9.25)

where y0 is the impact parameter of the source trajectory relative to the lens, µ
is the apparent motion, in units of θE per time, and t0 is the time when y = y0
(figure 9.11). The resulting light curve is symmetric about t0, and achromatic (i.e.
has the same shape in every wavelength). If the photometric sensitivity is large
enough to detect the unlensed source, the event will appear as a flaring up of a
persistent source; otherwise, it will appear as a transient flare.

In order to plan the observational strategy for detecting gravitational lensing,
or to estimate how likely it is that an observed flare is due to lensing, it is
necessary to calculate the detection probability. Two quantities are commonly
used to express this probability, the optical depth and the lensing rate. The optical
depth for gravitational lensing, τ , is usually defined in relation to the probability
of having at least one lens along the line of sight. If the cross section of the lens
at position zi is S(zi ), and the number density of lenses there is n(zi ), then the
probability P of having at least one lens along the line of sight is the complement
of the probability of not encountering any lens,

P = 1−
∏

i

(1− n(zi )S(zi )�zi )

= 1− exp

(
−
∫ z

0
nS dz′

)
≡ 1− e−τ → τ (τ � 1). (9.26)

It should be emphasized that τ is not a probability, and that P and τ are
interchangeable only when both are small. It is customary to define the lensing
cross section as S = πθ2

E, which corresponds to the region where a source
will be magnified by A > 1.34 (equation (9.20)). This definition is useful
when there are many possible lines of sight and it describes the probability that
at any given instant a given line of sight will be lensed. This is relevant for
Galactic microlensing searches, where millions of background stars are monitored
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Figure 9.11. The microlensing light curve that corresponds to the lensing event in
figure 9.9 up to time t = 19, in the case where the two images can not be resolved. The
light curve is overlaid on the two lensed images as they would be observed if they could be
resolved. The point on the time axis indicates the position of the source along its trajectory.
The flux level on the left is the unmagnified flux of the source. The complete light curve
will be symmetric relative to the peak flux.

simultaneously to find the rare one that is lensed by an intervening star. The
observational situation for gravitational lensing by the MBH in the Galactic
Center is different because the position of the lens is known and fixed, and so
there is only one line of sight. In analogy to equation (9.26), the optical depth is
then defined in relation to the probability of having at least one source behind the
lens along the line of sight,

τ =
∫ ∞

DOL

n#πR2
Ed DOS (9.27)

where RE is the physical size of θE at the source plane,

RE = θ∞
√
(DOS − DOL)DOS. (9.28)

Rough estimates predict τ ∼ 1 for lensing by the MBH (assuming no limits on
the photometric sensitivity).

The optical depth does not take into account the relative motions of the lens
and source, which reshuffle their random alignment and introduces a timescale to
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the problem. A more useful quantity for the lensing by the MBH is the lensing
event rate with flux above a detection threshold F0 due to the motion of sources
behind the MBH,

�(>F0) � 2
∫ ∞

DOL

n#v
RE

A
d DOS A ≥ F0

L#/4πD2
OS

(9.29)

where v# is the source star’s projected velocity, L# is its luminosity and A � 1
is assumed. For practical applications, equation (9.29) has to be modified to
take into account the range of stellar luminosities and velocities, dust extinction,
the total duration of the observations T and the sampling rate �T (the mean
duration of events magnified by more than A is t = πRE/2Av; only events with
�T < t < T can be detected).

Figure 9.12 summarizes the dependence of the lensing cross section,
timescale and magnification on DLS. The observational limitations, F0, T and
�T , place restrictions on DLS and the impact parameter for which sources can be
detected, and affect the typical timescales and peak magnification that are likely
to be observed. For example, high magnification events typically have longer
timescales because the source trajectory must have a smaller impact parameter
and so it spends more time in the Einstein radius. Therefore, observations with
limited temporal sampling will tend to pick out high magnification events.

Were any microlensing events detected? A couple of possible transient
flaring events were detected very close to Sgr A# (Genzel et al 1997, Ghez et
al 1998). For one of these a light curve was recorded, but as it was under-sampled
only estimates of a timescale (∼1 yr) and a typical magnification (∼A > 5)
could be derived from it. The a posteriori probability of detecting a lensing event
was estimated at only 0.5%, but on the other hand, the observed timescale and
magnification are close to the median value that is expected for the observational
limitations (Alexander and Sternberg 1999). The interpretation of this event
remains inconclusive.

9.4.4 Magnification bias

A lens magnifies by enlarging the angular size of the unlensed sky behind it, and
since surface brightness is conserved, the fluxes of sources are magnified by the
same amount. When the photometric sensitivity is such that all the stars can be
detected even without being magnified, then the effect of lensing is to decrease
the surface density of sources. However, if the fainter stars cannot be observed
unless magnified, there are two possibilities (figure 9.13): either there are enough
faint sources that are magnified above the detection threshold to over-compensate
for the decrease in surface density (‘positive magnification bias’), or there are
not enough faint sources (‘negative magnification bias’). The lensed luminosity
function (number of stars per flux interval) is related to the unlensed one by(

d�

d F

)
lensed

∣∣∣∣
F
= A−2

(
d�

d F

)
unlensed

∣∣∣∣
F/A

(9.30)
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BH

Observer Optical axis

Microlensing

Macrolensing

Figure 9.12. The lensing cross section, timescale and magnification as a function of
source distance behind the MBH. The size of the Einstein ring, or lensing cross section
(cone, see equation (9.28)), increases with distance behind the MBH. Close behind the
MBH the Einstein ring (and the distance between the two images) is smaller than the
telescope’s angular resolution and the lensing appears as a microlensing event. Farther out,
the Einstein ring is large enough for the two images to be resolved, and the lensing appears
as a macrolensing event. The duration and peak magnification of the events depend on the
impact parameter of the stellar trajectories (arrows). The closer they are to the optical axis,
the longer the events and the higher the peak magnification are. Trajectories with impact
parameters at a fixed ratio of the Einstein radius (the two trajectories connected by the
dotted line) will have the same peak magnification (equation (9.21)), but the event duration
will be longer for the sources farther away behind the MBH (assuming a uniform velocity
field).

where � is the surface number density of stars and F the flux. In many cases
the luminosity function is well approximated by a power law, d�/d F ∝ F−β . It
then follows from equation (9.30) that for β = 2 the decrease in the total surface
density is exactly balanced by the magnification of faint stars above the detection
threshold.

The chances for the detection of this effect in the Galactic Center appear
small. A statistically meaningful detection requires a very high surface density
that probably exceeds even that around the MBH (Wardle and Yusef-Zadeh 1992),
and furthermore, models of the stellar luminosity function in the inner Galactic
Center suggests that β ∼ 2 for giants (Alexander and Sternberg 1999).

9.4.5 Beyond the point mass lens approximation

Up to now, we have considered only the simple case of lensing by a point mass.
There are two reasons to explore more complicated models. The first is that it
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Source plane Image plane

Lensing

Figure 9.13. The magnification bias in star counts due to gravitational lensing. Stars
(circles) are counted in a field of a fixed angular area (square) with a telescope of a given
photometric detection threshold. The field in the unlensed sky (source plane, left), contains
one bright star that can be observed (filled circle) and two stars that are too faint to be
observed (open circles). Gravitational lensing stretches angular areas and magnifies fluxes
by the same factor. The field in the lensed sky (image plane, right), now contains only
two stars, but because they are magnified, both can be observed. This is an example
of positive magnification bias, where gravitational lensing increases the apparent stellar
surface density even as it decreases the total surface density. Negative magnification bias
occurs when there are not enough faint stars in the lensed population to compensate for the
decrease in the total surface density.

would be useful if gravitational lensing could be used to dispel any remaining
doubts that the dark compact mass in the Galactic Center is indeed a MBH,
and not some other extended distribution of matter, such as a compact cluster
of stellar remnants (Maoz 1998) or a concentration of exotic particles (Tsiklauri
and Viollier 1998). Unfortunately, it can be shown that the behavior of high-
magnification light curves near peak magnification is universal and independent of
the details of the lens (equation (11.21b) of Schneider et al 1992). For spherically
symmetric mass distributions this implies that the light curves differ only in the
low magnification tails, which are much harder to observe. The second reason is
that the MBH is surrounded by a massive stellar cluster. Because the stellar mass
is not smoothly distributed but is composed of discrete point masses, its effect on
the lensing properties of the MBH is much larger than one may naively estimate
by adding the stellar mass to that of the MBH. We conclude the discussion of
gravitational lensing in the Galactic Center by describing briefly the effect of
enhanced lensing by stars near the MBH (Alexander and Loeb 2001, Chanamé et
al 2001).

The effect of stars on lensing by the MBH is similar to that of planets on
microlensing by a star, an issue that was studied extensively for the purpose
of detecting planets by microlensing (e.g. Gould and Loeb 1992). The lensing
cross section of an isolated star is θ2

E(M#)/θ
2
E(M•) = M#/M• � 10−6 smaller

than that of the MBH (equation (9.17)). However, when the star lies near
θ(M•), the shear of the MBH distorts its lensing cross section, which develops
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Figure 9.14. A schematic representation of lensing enhancement by a star near the MBH
(Alexander and Loeb 2001, Chanamé et al 2001). A light source S passes behind the
MBH (filled circle in the middle) and, in the absence of any other lensing mass, appears
as two images: I1 outside the Einstein ring and I2 inside the Einstein ring. When one of
the stars near the MBH happens to lie (in projection) close to I2, it will split I2 into two
or four sub-images (two shown here), I2a and I2b. The star’s Einstein ring is sheared by
the potential of the MBH to an elongated shape of complex topology (represented here
for simplicity as an ellipse), which increases in size the nearer I2 and the star are to the
Einstein radius of the MBH. This effect increases the cross section for high-magnification
events above that of an isolated MBH, and changes the character of the light curves.

a complex topology, becomes radially elongated and is increased by up to an
order of magnitude (figure 9.14). As the stars orbit the MBH, their elongated
cross sections scan the lens plane. If these happen to intersect one of the images
of a background source that is lensed by the MBH, the image will be split into
two or four sub-images whose angular separation will be of order θE(M#), and
so the sub-images will not be individually resolved. However, their combined
flux will be significantly magnified. This will increase the probability of high-
magnification events over what is expected for lensing by the MBH alone. The
light curves of such events will no longer be symmetric as they are for a point
mass, but will exhibit a complex structure (e.g. Wambsganss 1997), and their
typical variability timescales will rise sharply for images that lie near θE(M•)
because of the increased stellar cross section for lensing. Enhanced lensing by
stars in the Galactic Center is estimated to increase the probability of A > 5
lensing events by ∼2 and of A > 50 events by ∼3.
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9.5 Summary

Observations of the MBH in the Galactic Center present a unique opportunity to
study the consequences of extreme stellar density, velocity and tidal fields on the
dynamics and evolution of stars and their relation to the dynamics and evolution
of the MBH. The existence of a high-density relaxed stellar cusp around the MBH
in the Galactic Center is theoretically motivated, and supported by observations.
We explored some of the consequences of this environment for the appearance,
internal structure and evolution of stars, through exotic object formation by direct
collisions, collisional destruction of giant envelopes, stochastic tidal spin-up of
stars by collisions with other stars, and extreme tidal interactions in the course of
tidal scattering by the MBH. It was shown that tidal processes have the potential
of affecting a significant fraction of the stars over a large volume around the MBH.

The MBH is also a gravitational lens. This can be used to probe the
dark mass and the stars around it, but it also has the potential for complicating
the interpretation of observations in the Galactic Center. Different detection
modes were considered: macrolensing, microlensing, magnification bias, and the
detection probability and detection rate were defined. Results from a statistical
method for detecting lensed images and for pinpointing the MBH on the IR grid
suggest that there may be a few far background supergiants that are lensed by
the MBH. We described a lensing effect that involves both the MBH and the
stars around it, and can increase the probability of high-magnification events and
modify the structure of the light curves.

The topics covered by this chapter by no means exhaust the scope of the
subject. We did not address, among others, star formation near the MBH, the role
of stellar evolution in feeding the MBH, or compact stellar remnants and x-ray
sources. Some of these issues are discussed elsewhere in this book.

Over the next decade a wide array of IR instruments, both ground based
and space borne, will improve the quality of photometric, spectroscopic and
astrometric observations of the Galactic Center by orders of magnitude. Many
of the issues discussed here will be resolved, as new questions will surely be
raised. One thing is certain—we can look forward to exciting times in Galactic
Center research.
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Chapter 10

Black hole accretion models for the Galactic
Center

Robert F Coker
Los Alamos National Laboratory, USA

Now we turn our attention to the hydrodynamic process of gas falling onto
weakly active black holes and the associated emission. Spherical accretion
from the surrounding gas (Bondi–Hoyle accretion) as well as rotating and
radiatively inefficient accretion (Advection-Dominated Accretion Flows, ADAFs)
are discussed. The basic hydrodynamical equations for these problems are
derived and applied to the Galactic Center.

10.1 Introduction

Compact objects gravitationally capture matter in a process known as accretion.
Matter falling down the steep gravitational potential of a compact object may
release more than 10% of its rest-mass as radiation. In fact, matter accreting via
a disk onto a maximally spinning black hole can release up to 42% of its rest
mass! By way of comparison, nuclear burning which converts H to Fe releases a
maximum of 0.9%. Thus, accretion can be an extremely efficient energy source.
In general, the accretion geometry is determined by the interplay between the
heating and cooling mechanisms, the intrinsic angular momentum present in the
accreting gas, and the inner and outer boundary conditions of the flow. However,
it is not easy to generically determine the accretion geometry onto a compact
object and then calculate the resulting emitted spectrum. This requires solving
the time-dependent three-dimensional relativistic MHD (magnetohydrodynamic)
equations with radiative transfer, a formidable task indeed. Therefore, we will
focus on idealized accretion models which use assumptions to tremendously
simplify the overall problem. In addition, in order to apply our discussion to
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Sgr A*, the supposed supermassive black hole in the Galactic Center, we deal
here only with black hole accretion.

The models discussed here are fairly general but in practice are mainly
applicable to black holes at relatively low (sub-Eddington) accretion rates.
Standard thin disk accretion models, for example, which are invoked for luminous
quasars are not explicitly discussed as they can be found in many textbooks (e.g.
Frank et al 2002).

10.2 Accreting gas with zero angular momentum

10.2.1 Adiabatic spherical accretion

The simplest black hole accretion scenario was worked out more than half a
century ago (Hoyle and Lyttleton 1939, Bondi and Hoyle 1944, Bondi 1952).
First, we assume that the mean free path of the accreting gas is small so that the
flow is hydrodynamical; that is, some mechanism, such as plasma instabilities,
serves to effectively couple the gas particles. Second, we assume that the
gravitational field of the black hole is dominant so that the field is spherically
symmetric and the self-gravity of the accreting gas can be ignored. Third, we
assume the black hole has zero charge and is non-rotating. Fourth, we assume
the accreting gas has zero angular momentum and is at rest at infinity. Fifth, we
ignore magnetic fields and entropy loss due to radiation so that the accreting gas
can be approximated as adiabatic. These assumptions allow us to apply solutions
of the steady-state non-relativistic hydrodynamic equations.

If the accreting particles are assumed to be collisionless, the gas is no
longer a hydrodynamical fluid. As a result, compared to the hydrodynamical
models discussed in this chapter, the density near the black hole and thus the
mass accretion rate will be depressed by a factor of (c∞/c)2. Collisionless
accretion thus results in a density profile that goes as r−1/2 rather than r−3/2.
A flatter density profile leads to considerably lower mass accretion rates. Since
the primary problem in explaining the spectrum of Sgr A* is its low luminosity
for its accretion rate as derived from hydrodynamical models, perhaps non-
hydrodynamical models which assume larger particle mean-free paths may prove
useful. Of course, then the problem becomes one of explaining why the accretion
flow around Sgr A* is collisionless while those of other accreting black hole
systems are apparently not.

The mass continuity equation for spherical hydrodynamical accretion, given
by

∂ρ

∂ t
+∇ · (ρu) = 0 (10.1)

where ρ is the mass density of the accreting gas and u is the radial velocity
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(denoted so that for inward flow, u > 0), reduces to

1

r2

d

dr
(r2ρu) = 0 (10.2)

or

2

r
+ ρ

′

ρ
+ u′

u
= 0 (10.3)

where the prime (′) denotes differentiation with respect to r (d/dr).
The non-relativistic momentum or Euler equation is given by

du
dt
+ 1

ρ
∇P + ∇ = 0 (10.4)

where P is the thermal pressure and  is the gravitational potential. The total or
Lagrangian time derivative is given by

d

dt
= ∂

∂ t
+ u · ∇. (10.5)

Since it is assumed that
P ∝ ργ (10.6)

where γ is the adiabatic index, the adiabatic sound speed, cs, is determined from

c2
s ≡

dP

dρ
= dP

dr

(
dρ

dr

)−1

(10.7)

or cs = √
γ P/ρ. In terms of the temperature, T , of a fully ionized plasma

consisting of pure hydrogen, the adiabatic sound speed can be written as

c2
s =

2γ kBT

mp
(10.8)

where kB is the Boltzmann constant and mp is the mass of the proton. For a point
mass of mass M , we have

∇ = GM

r2
(10.9)

where G is the gravitational constant. Assuming a steady state, the Euler equation
(10.4) then becomes

u
du

dr
+ 1

ρ

dP

dr
+ GM

r2
= 0 (10.10)

or

uu′ + c2
s
ρ′

ρ
+ GM

r2 = 0. (10.11)
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Solving for ρ′ and u′ using (10.3) and (10.11), we find

u′ = u

(
2c2

s

r
− GM

r2

)
(u2 − c2

s )
−1 (10.12)

and

ρ′ = ρ
(

GM

r2
− 2u2

r

)
(u2 − c2

s )
−1. (10.13)

A relativistic solution to the equations of motion (Shapiro and Teukolsky 1983,
appendix G) shows that

u →
√

2GM

r
≡ uff (10.14)

as r → 0; that is, moving inward, u must rise monotonically from 0 to the free-fall
velocity. Given this relation, in order to avoid singularities in the flow, there must
exist a transonic radius rt such that the numerators and denominators in (10.12)
and (10.13) simultaneously vanish. This occurs when

GM

2rt
= u2(rt) = c2

s (rt). (10.15)

Thus, at the transonic radius, the internal thermal energy per unit mass of the
accreting gas is comparable to the gravitational potential. In order to evaluate
(10.15) in terms of the boundary values at infinity, we integrate (10.11) using
(10.7) and find the Bernoulli equation:

u2

2
+ c2

s

γ − 1
− GM

r
= c2∞
γ − 1

(10.16)

where c∞ is cs at infinity. Note that (10.16) also shows that the velocity
approaches the free-fall velocity near the origin. In fact, at the Schwartzchild
radius rs ≡ 2GM/c2 where c is the speed of light, the velocity must approach c.
Combining (10.15) and (10.16), we find

rt = 5− 3γ

8
RA (10.17)

where the so-called ‘accretion radius’ is defined as

RA ≡ 2GM

c2∞
(10.18)

and

u(rt) = cs(rt) ≡ ct = 2

5− 3γ
c2∞. (10.19)
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We can now calculate the mass accretion rate, an important diagnostic for
accretion models. In this simple picture, the mass continuity equation (10.2)
shows that r2ρu is a constant for all r . Integration gives

Ṁ ≡ 4πr2ρu. (10.20)

Using (10.7) again, one can show that

ρ

ρ∞
=
(

cs

c∞

)2/(γ−1)

. (10.21)

Combining the last four equations, the mass accretion rate is seen to be

Ṁ = πλR2
Aρ∞c∞ (10.22)

where

λ ≡ 2(9−7γ )/(γ−1)/2(5− 3γ )(3γ−5)/(γ−1)/2. (10.23)

For γ = 5/3, λ = 0.25; λ monotonically increases towards a value of e2/4 =
1.12 as γ → 1. The definition for the accretion radius RA is now clear: to within
the factor λ, the mass accretion rate is simply the mass flux of gas with density
ρ∞ and velocity c∞ through the area of a circle with a radius RA.

We now can construct complete accretion profiles for the velocity, density,
and temperature. Far from the black hole, gravity is unimportant so that ρ and T
are approximately constant and equal to their values at infinity. From (10.20) and
(10.22), the velocity for r � rt is thus

u = c∞λ
4

(
RA

r

)2

. (10.24)

Once through the transonic point, the gas becomes supersonic and the velocity
approaches free fall. Thus, for r � rt, using (10.22) and (10.18), the density
profile approaches

ρ = ρ∞λ
4

(
RA

r

)3/2

(10.25)

while from (10.21) the temperature profile (T ∝ c2
s ) is

T = T∞
(
λ

4

)γ−1 ( RA

r

)3(γ−1)/2

. (10.26)

In adiabatic spherical accretion, the only length-scale in the problem is the
accretion radius, RA. Since the mass of the black hole, M , only enters into
the problem via RA, one needs only to specifiy RA, ρ∞, and c∞ to completely
determine the solution.
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Figure 10.1. Schematic diagram showing streamlines of initially supersonic particles
accreting onto a compact object.

Transonic accretion of spherically symmetric and initially subsonic gas is
known as Hoyle–Lyttleton accretion. However, if the accreting gas has non-zero
velocity at infinity relative to the black hole, these results can still be applied with
only slight modification. Such a model can be applicable to a black hole moving
rapidly through the ISM or a black hole being fed by stellar winds from a large
star cluster located far enough away from the black hole that the flow near the
black hole is approximately uniform and planar. If the velocity of the gas relative
to the black hole is given by v∞, then replacing c∞ with

√
c2∞ + v2∞ in the Hoyle–

Lyttleton results will be correct to within a correction factor of order unity (the
slight asymmetry between c∞ and v∞ can be seen in the Bernoulli equation).

If the flow is initially supersonic so v∞ > c∞, a bowshock will form at
rt; at distances closer than �rs, the flow will be nearly spherically symmetric.
Figure 10.1 shows a schematic diagram of what a supersonic accretion flow would
look like in the rest frame of the black hole. Note that particles on streamlines
that are within RA of the black hole will eventually be accreted. In the hypersonic
limit, where v∞ � c∞, the accretion of gas with zero net angular momentum is
known as Bondi–Hoyle accretion.

For Sgr A*, the black hole in the Galactic Center, one idea is that the primary
source for the accreting material is stellar winds from young massive stars that are
distributed fairly uniformly around the black hole at distances comparable to RA.
Thus, although the flow is probably supersonic and so of Bondi–Hoyle type, the
assumption of planarity—and thus probably that of zero net angular momentum—
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is likely to be at least somewhat inappropriate.

10.2.1.1 A comment on the relativistic solution

This derivation is only valid in the non-relativistic limit: it has been assumed that
kBT∞ ≤ kBT (rt) � mpc2 and rt � rs. From (10.17) and (10.19) it can be
seen that as γ → 5/3, rt → 0 and so the derivation breaks down. However, a
general relativistic calculation only changes the gas profiles by constants that are
on the order of unity; this is expected since the flow is determined by the boundary
conditions at infinity, where the gravity of the compact object is negligible. Such
a derivation can be done in the same manner as here as long as r is identified with
the Schwarzschild radial coordinate, u with the radial four-velocity, and ρ with
the rest-mass density. The primary difference, as shown in Shapiro and Teukolsky
(1983), is that the transonic point shifts.

Specifically, (10.17) becomes

rt = 1+ 3c2∞
4

c∞
ct

RA (10.27)

and (10.19) becomes

(1+ 3c2
t )(γ − 1− c2

t )
2 = (γ − 1− c2∞)2. (10.28)

In this section only, for ease of writing, speeds (c∞ and ct) are written in units of
c. After a lot of algebra, (10.28) can be rewritten as

x3 + a1x + a2 = 0 (10.29)

where

x ≡ c2
t +

7− 6γ

9
(10.30)

a1 ≡ − 1

27
(3γ − 2)2 (10.31)

and

a2 ≡ 2

81

(
3γ 3 − 6γ 2 + 4γ − 8

9

)
− (γ − 1− c2∞)2

3
. (10.32)

If
a3

1

27
+ a2

2

4
< 0 (10.33)

then (10.29) has three real solutions, only one of which is physically applicable
here (e.g. one solution corresponds to a complex sound speed). It can be shown
that for γ = 1, if c2∞ > 2/(9

√
3), there is no accretion solution. This limit

increases with increasing γ until at γ � 1.5, there is a solution for all c∞ < 1.
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Figure 10.2. Transonic soundspeed determined from (10.28) and normalized to the
non-relativistic solution (10.19). The top curves are functions of γ for c∞ = 0.01 (full),
0.1 (dotted), and 0.5 (dashed). The bottom curves are functions of c∞ for γ = 1.01 (full),
1.33 (dotted), and 1.66 (dashed). Note the latter curves are for small values of c∞.

If an accretion solution for ct exists, it is given by

φ ≡ arccos

−a2

2

(
−a3

1

27

)−1/2
 (10.34)

s1 ≡ 2

√−a1

3
cos

(
φ

3

)
− 7− 6γ

9
(10.35)
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s2 ≡ 2

√−a1

3
cos

(
φ

3
+ 4

3
π

)
− 7− 6γ

9
. (10.36)

If γ − c2∞ < 1, then ct = √s1; otherwise, ct = √s2. Figure 10.2 shows some
solutions for the transonic sound speed normalized to the non-relativistic solution
(10.19). Only very near γ = 5/3 and c∞ = 1 does the solution approach the
first order relativistic solution of

√
c∞2/3. Further, substantial deviations from

(10.19) are evident for a variety of values of γ (but particularly near γ = 5/3),
even for small values of c∞. As a result, the location of the bowshock will differ
from (10.17) even for non-relativistic sound speeds.

10.2.2 Supersonic non-adiabatic spherical accretion

The Bondi–Hoyle accretion model provides analytical expressions which give
a good first look at the accretion process, but it is simplistic and makes many
assumptions that are invalid for Sgr A*. For example, the accreting gas near
Sgr A* is likely to be relativistic, but the gas at large radius is not. Also, the
gas cools via radiation and heats via the reconnection of magnetic field lines.
Thus, γ is not constant and an adiabatic solution is inaccurate. Since most of the
radiation may be coming from near the black hole, we will set up the relativistic
hydrodynamic equations which can then be numerically evaluated. In order to
make the problem tractable we assume the gas consists of fully ionized hydrogen
so that ni = ne = n.

We replace (10.4) with the relativistic Euler equation for a spherical
geometry:

uu′ + H P ′ + GM

r2
= 0 (10.37)

where the pressure is given by

P = 2nkBT (10.38)

and

H ≡ c2 + u2 − 2GM/r

P + eρ + ε . (10.39)

In the non-relativistic limit, H reduces to 1/ρ. The particle mass-energy density
is

eρ = mpc2n (10.40)

and the internal energy density of the gas is

ε = αnkBT . (10.41)

In the fully ionized but non-relativistic limit, i.e. 105 K � T � 6× 109 K, α = 3.
However, in the relativistic electron limit, but still non-relativistic for the protons,
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so that 6 × 109 K � T � 1013 K, α = 9/2. For a smooth transition, we use the
general expression from Chandrasekhar (1939) that is valid for all T :

α = x

(
3K3(x)+ K1(x)

4K2(x)
− 1

)
+ y

(
3K3(y)+ K1(y)

4K2(y)
− 1

)
(10.42)

where x ≡ mec2/kBT , y ≡ mpc2/kBT and Ki refers to the i th order modified
Bessel function. If the gas is everywhere non-relativistic and in the absence of
heating and cooling, these equations reduce to a γ = 5/3 adiabatic gas.

To include the braking effects of radiation pressure, we include a term Prad in
the pressure (10.38) and a term 3Prad in the internal energy density (10.41) where

Prad =
∫ νm

0

4π

3
uP dν. (10.43)

Here, νm is the frequency below which the radiative emission at that radius
is highly absorbed. Thus, the optical depth, τ∞r (νm), from r to infinity is
approximately unity. The Planck energy distribution, uP, in the low-frequency
Rayleigh–Jeans limit is simply 2ν2kBT/c3, so that

Prad = 8π

9
kBT

(νm

c

)3
. (10.44)

In the Rayleigh–Jeans limit, hνm � kBT ; for Sgr A* we find that this is always
true. In general, νm reaches a maximum value of �1012 Hz near the black hole
but drops off roughly as r−1 so that as long as n � 105 cm−3 near the black
hole, the effects of radiation pressure are negligible. This is expected since the
luminosity of Sgr A* is vastly sub-Eddington (see section 10.2.3).

Substituting the definitions (10.38), (10.40), and (10.41) into (10.37) and
using (10.3), we solve for the derivative of the velocity

u′ = u
2nkB(T ′ − 2T/r)H + GM/r2

2nkBT H − u2
. (10.45)

For simplicity, we write u′ as the sum of two terms:

u′ = f T ′ + g (10.46)

where

f ≡ u2nkB H

2nkBT H − u2
(10.47)

and

g ≡
(u

r

) GM/r − 4nkBT H

2nkBT H − u2 . (10.48)

The form of these expressions is that of the classic wind equations (e.g. Parker
1960, Melia 1988). In the model we consider here, the gas is supersonic at
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infinity and remains supersonic throughout its inward trajectory. We therefore
avoid the special handling required for solutions that cross any sonic points, where
the denominator of (10.45) vanishes.

With heating and cooling, we can no longer use (10.6) for our equation of
state. We use a modified form of the first law of thermodynamics:

u
d

dr

( ε
n

)
+ u P

d

dr

(
1

n

)
+ � −�

n
= 0 (10.49)

where � and � are the frequency-integrated heating and cooling emissivities,
respectively.

These equations assume that the magnetic field is radial; that is, u × B = 0
and there is no large-scale current. Thus, the compression of the gas is parallel to
the magnetic field lines and we can ignore the magnetic pressure. If the magnetic
field at large radius is assumed to originate from multiple stellar sources, it will
be tangled and the three components of the field will be roughly equal. As the
gas accretes, it is compressed radially and, in the absence of any dissipation
or reconnection, the radial component will grow as 1/r2 while the tangential
components will only grow as 1/r . Therefore, for r � RA we can assume the
magnetic field is predominantly radial; in all that follows we ignore the tangential
component of the magnetic field. However, due to the ‘no hair’ theorem, the
magnetic field must be purely tangential at the event horizon of a black hole; we
shall assume for now that this occurs infinitesmally close to the event horizon. In
this model, the magnetic field serves only to determine �, the heating term.

Substituting in (10.3) and the expressions for P and ε, dividing by u, taking
the derivative, and rearranging gives

αkBT ′ +
(

u′

u
+ 2

r

)
2kBT + � −�

nu
= 0. (10.50)

Removing u′ via (10.46), we can solve for T ′:

T ′ =
[
�− �

nu
− 2kBT

(
g

u
+ 2

r

)]
×
[
αkB +

(
f

u

)
2kBT

]−1

. (10.51)

Given a prescription for � and appropriate boundary conditions, (10.51) can be
numerically evaluated and thus, using (10.3) and (10.46), the temperature, density,
and velocity profiles can be determined.

The radiative cooling term, �, includes emission due to magnetic
bremsstrahlung, electron–ion and electron–electron thermal bremsstrahlung, and
line cooling, but it does not depend on any derivatives (see Melia and Coker 1999
for emissivity expressions). Local UV heating from the massive stars near Sgr A*
results in a minimum gas temperature of 104−5 K (Tamblyn et al 1996), but the
shocked stellar winds at the model’s outer radius, RA, are expected to be hotter
than 105 K. Thus, the only non-compressive heating term needed in � is that
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due to magnetic field reconnection. Also, although the expression for � depends
on the density of ions and electrons, we can here safely assume ne = ni = n.
Following Ipser and Price (1982), for the heating term, we use

� = nu

8π

{(
B2

n

)′
− B2

n

(
u′

u
− 2

r

)}
(10.52)

or

� = u

(
B B ′

4π
+ B2

2πr

)
(10.53)

where B is the magnetic field. If the magnetic field is flux conserved, for which
B(r) ∝ r−2, then no reconnection takes place and � = 0. However, if the
density profile is similar to that from adiabatic accretion given in (10.25), then
B(r) ∝ r−5/4, and � > 0. In the case of a dynamo, B increases more rapidly
than r−2 and � < 0 so that the magnetic field actually cools the gas.

A common assumption is that the magnetic field is in equipartition with some
characteristic energy density in the flow. For simplicity we will here assume the
magnetic energy density scales with the gravitational potential energy density so
that

B2

8π
= δB GMρ

r
(10.54)

where δB is a constant scale factor. However,� now depends on T ′ so that (10.51)
must be rearranged. With B given by (10.54), (10.52) becomes

� = δB GMρ

r

(u

r
− f T ′ − g

)
(10.55)

so that

T ′ =
[
�

nu
+ δB GMmp

r

(
g

u
− 1

r

)
− 2kBT

(
g

u
+ 2

r

)]
×
[
αkB +

(
f

u

)(
2kBT − δB GMmp

r

)]−1

. (10.56)

Given δB , M , and boundary values for T , ρ, and u, we can determine the
profiles for perfectly convergent supersonic accretion. A representative result for
the temperature profile, using values typical for Sgr A*, is shown in figure 10.3 for
various values of δB . The velocity and density profiles are very close to those for
pure Bondi–Hoyle accretion (r−1/2 and r−3/2 respectively), but the temperature
profile deviates significantly from r−1 due to the magnetic heating and the change
in the equation of state as the electrons become relativistic. Note that with heating
and cooling, there are additional length scales present so the solution no longer
scales perfectly with the accretion radius.

If the magnetic field is tied to the kinetic or thermal energy density, one
gets similar results to figure 10.3. However, based on the fact that magnetic
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Figure 10.3. Example temperature profiles from solving (10.56). The outer radius of the
integration is RA. Boundary values are v∞ = 750 km s−1, T∞ = 106 K, Ṁ = 1021 g s−1.
The three curves correspond to δB = 0 (full), 0.01 (dotted), and 0.03 (dashed). The black
hole mass M = 2.6× 106 M�.

reconnection is not constant so that the field may be subequipartition at large
radii and superequipartition at small radii (Melia and Lowalenko 2001), attempts
were made to fit the spectrum of Sgr A* using an arbitrary magnetic field profile.
The results (Coker and Melia 2000) suggest the flow consists of three regions: a
nearly equipartition region at large radii, a region with a flat magnetic field near
∼100rs and a region with a magnetic dynamo near ∼4rs. This, combined with
hydrodynamical simulations that suggest the accreting gas has sufficient specific
angular momentum so that the assumption of spherical accretion breaks down
near∼100rs, has led to the conclusion that the spherical accretion model by itself
is insufficient to model the accretion flow near Sgr A*.

10.2.3 Radiation from spherical accretion

Compared to active galactic nuclei (AGNs) and even X-ray binaries (XRBs),
Sgr A* is emitting very little energy for its mass; i.e. its luminosity is much
less than the Eddington luminosity, the critical luminosity above which radiation
pressure exceeds gravity. For Sgr A*, the former is ∼105 L� (Zylka et al 1995)
while the latter is ∼1011 L� (Shapiro and Teukolsky 1983). The appeal of
spherical accretion in explaining the spectrum of Sgr A* is that it is inherently
inefficient, unlike most other accretion scenarios onto compact objects. For
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example, consider the case that the temperature and density scale as r−1 and
r−3/2, respectively, and emission is only due to thermal bremsstrahlung so
� ∝ n2T 1/2 (Rybicki and Lightman 1979 equation (5.15b)). If radiative emission
is thought of as a minor perturbation of the flow, one can estimate the accretion
luminosity as

Lacc =
∫ ∞

rs

4πr2� dr (10.57)

or, in erg s−1,

Lacc � 1031
(

T∞
104 K

)1/2 ( n∞
1 cm−3

)2
(

M

M�

)3
(
v2∞ + c2∞
(1 km s−1)2

)−7/2

. (10.58)

For cool, dense gas, line cooling increases the accretion luminosity, while
magnetic bremsstrahlung increases the luminosity of an accreting hot magnetized
plasma. Assuming just thermal bremsstrahlung, the accretion efficiency is

ε = Lacc

Ṁc2
� 10−4

( n∞
1 cm−3

)( T∞
104 K

)1/2 M

M�

(
v2∞ + c2∞
(1 km s−1)2

)−2

(10.59)

where the accretion rate is evaluated at the accretion radius. Thus, for most likely
sets of values, ε � 0.1, the rough value for accretion disks. For the extreme case
(δ = 0.03) shown in figure 10.3, there is substantial additional luminosity due to
magnetic bremsstrahlung emission, but the accretion efficiency is still only ∼4%.
Thus, spherical accretion can naturally explain the sub-Eddington luminosity of
Sgr A*.

If the mass accretion rate at small radii is near the Bondi–Hoyle estimate and
the magnetic field is sufficiently strong, the resulting temperatures and densities
at small radii are high enough that the optical depth becomes larger than unity.
We can crudely estimate the optical depth, τ , for spherical accretion following
Rybicki and Lightman (1979). Since we are particularly interested in τ near the
event horizon, we include special and general relativisitic corrections (Shapiro
1973). Thus, δτ ( j) � δrαabs, with

δr = δr0√
(1− rs/r)(1− β2)

(10.60)

where δr0 = r j+1 − r j , the observed zone size at infinity, αabs is the absorption
coefficient, and β is the bulk velocity of the flow in units of c as measured by a
stationary observer:

β = u/c√
(u/c)2 + 1− rs/r

. (10.61)

Note that this is not completely correct since we are not including, for example,
the capturing of photons by the black hole, which introduces an angular
dependence.
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For αabs, we use Kirchoff’s law,

αabs = jν/Bν (10.62)

where jν is the total emissivity (in erg cm−3 s−1 Hz−1 steradian−1) and Bν is
the blackbody Planck function. For the models discussed here, we use a total
emissivity that includes magnetic bremsstrahlung emission (Coker and Melia
1999) and electron–ion and electron–electron thermal bremsstrahlung (Melia and
Coker 1999).

In (10.62), ν corresponds to the emitted frequency, not the observed
frequency. To find the total optical depth from zone j out to infinity at some
observed frequency ν0, related to the emitted frequency ν by

ν0 = ν
√
(1− rs/r)(1− β2) (10.63)

we use

τ∞ν0
( j) =

k=∞∑
k= j+1

(r j/rk)
2δτ (k). (10.64)

The minimum frequency νm that a photon needs to have in order to escape from
radius r j is found by determining the frequency at which τ∞ν0

( j) is unity with the
caveat that νm not be less than the plasma frequency

νp = e

√
n

πme
. (10.65)

This caveat is required since photons with a frequency less than νp are unable to
propagate and are thus trapped by the infalling gas. As previously mentioned, it
is found that νm � 1012 Hz. Also, at νc, the characteristic frequency at which a
given radius is primarily emitting, τ (r, νc) � 1 only for small radii.

10.2.4 Calculation of the spectrum due to spherical accretion

Once the radial profiles (optical depth, density, velocity, and temperature) are
determined, it is possible to calculate the emission spectrum for a given magnetic
field profile. The predicted observable luminosity Lν0 at infinity (Shapiro 1973,
Melia 1992) with relativistic corrections is

Lν0 = 16π2
j=J∑
j=1

e−τ
∞
ν0
( j )r2

j (1− β2)3/2(1− rs/r j )Iν (10.66)

where
Iν = Bν(1− e−δτ ( j )). (10.67)
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Figure 10.4. The full curve is an example spectrum profile from solving (10.56) and
(10.66) with parameters as in figure 10.3 but with δB = 0.001. Also shown are the
observed values and upper limits with the recent Chandra results (Baganoff et al 2001a, b)
highlighted in bold (see chapter 11 for a discussion of the observed spectrum). At a
distance of 8.5 kpc, for Galactic Center sources Fν � 1023Lν .

The sum over j is truncated at J , for which rJ ≡ RA. It is assumed that
τ∞ν0
(J ) = 0. This ignores the possible absorption by Sgr A West of the low-

frequency (ν0 < 109 Hz) radiation (Beckert et al 1996). Sgr A West is an H II
region surrounding Sgr A*.

An example of a spectrum arising from these equations is shown in
figure 10.4. Although only a representative solution, the primary features of
all spherical accretion models are apparent. First, there is little emission in
the infrared, unlike disk accretion scenarios where the gas circularizes and
thermalizes before accreting. Second, there is significant X-ray emission due to
thermal bremsstrahlung. However, in the case of Sgr A*, the observed quiescent
X-ray spectrum is too soft to be due to thermal bremsstrahlung alone; the sub-mm
emission, coming from very close to the black hole, is likely to be upscattered
via inverse Compton and produce additional X-ray emission. Third, the spectral
index in the radio is∼1, rather steeper than the observed value of∼0.3 (Falcke et
al 1998). This last characteristic deserves some attention.

If the gas temperature and density profiles are at all similar to the Bondi–
Hoyle results given earlier, and, if the radio emission is due to magnetic
bremsstrahlung from a thermal distribution of particles, it is impossible to match
both the observed 1 GHz radio flux and the soft X-ray upper limits (Liu and
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Melia 2001). Since the emission must be blackbody limited, one can put a lower
limit on the temperature at a given radius. Similarly, the gas temperature must
be less than the virial temperature, putting an upper limit on the temperature.
For frequencies less than hν/kBT , the thermal bremsstrahlung emissivity, j b

ν ,
scales as n2T−1/2 ∝ r−5/2. Thus, the volume-integrated emissivity will increase
with the size of the emission region as r1/2 so that the minimum luminosity
corresponds to the minimum size and maximum temperature consistent with the
blackbody and virial limits. Limits which result in the proper observed 1 GHz
flux yield a minimum radius and maximum temperature of approximately 2000 rs
and 109 K, respectively. Since the soft X-ray emission is not likely to be self-
absorbed while the GHz emission may be, the ratio of the volume integrated
emissivities must be less than the ratio of the observed fluxes. For an equiparition-
type magnetic field profile, the result is that the soft X-ray luminosity cannot be
less than ∼10−5 times the 1 GHz luminosity. Thus, since the observed ratio is
∼10−7 (Falcke et al 1998, Baganoff et al 2001a, b), the X-ray emission cannot
be due to thermal magnetic bremsstrahlung. Profiles which deviate substantially
from the Bondi–Hoyle results can avoid this problem. If one assumes an inflow
velocity that is larger than free-fall, for example, one can reproduce the radio and
X-ray emission, even when including self-Compton (Coker and Markoff 2001).
However, the most likely cause of deviation from Bondi–Hoyle is a non-spherical
accretion flow so that one has effectively a radially dependent mass accretion rate.
A non-thermal particle distribution due to shocks in the flow could also alter the
spectrum enough to invalidate these arguments.

10.3 Non-spherical accretion models

Both observationally and theoretically the bulk of the radio emission from Sgr A*
appears to come from close to the event horizon. At small radii the assumption
of spherical symmetry is probably invalid. Therefore, we would like to find
self-consistent solutions to the equations of motion which include differentially
rotating gas flows. We discuss two such models here: the Keplerian flow dynamo
model and the sub-Eddington two-temperature accretion model. Other commonly
used models, such as the well-known thin-disk model (Shakura and Sunyaev
1973) probably do not apply to Sgr A* since they predict substantial infrared
emission which is not seen in the Galactic Center. In fact, combined with the
presence of the stellar winds, it seems unlikely that any true large-scale disk exists
around Sgr A* (Coker et al 1999). However, the sub-Eddington two-temperature
accretion model discussed in section 10.3.2 results in a disklike accretion flow;
it has been argued that this flow incorporates the stellar winds without either
emitting significant infrared or being destroyed (Narayan et al 1998).

This apparent absence of a disk and any associated jet sets Sgr A* apart
from many other black hole systems such as luminous AGNs and XRBs. The
stars that feed Sgr A* are fairly uniformly distributed around the black hole so
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that it is probably accreting relatively little angular momentum. The direction of
the accreting angular momentum vector is likely to be time variable as well. Thus,
the complete picture probably requires a combination of large-scale spherical
accretion with a small-scale (and as yet unobserved) disk and/or jet.

A rough example of what the large-scale flow might look like near Sgr A*
is shown in figure 10.5. The 10 wind sources in this hydrodynamical model (see
Coker and Melia 1997 for details) produce large-scale shock fronts and cavities
with time-dependent characteristics. In reality there are at least two dozen (Genzel
et al 1996) stellar sources and some of them may be �1 RA from Sgr A*. Also,
the stars move relative to one another while in this simulation they are stationary.
Thus, the flow is likely to be even more highly non-spherical than is shown in the
figure. In fact, if the sources are rotating as a cluster (Genzel et al 2000), the flow
may have sufficient angular momentum to circularize at a radius as large as 104rs.

10.3.1 Keplerian flow with magnetic dynamo

This model assumes the sub-mm and X-ray emission of Sgr A* arises from the
circularization of the infalling gas at very small radii (Melia et al 2001). We
construct a standard accretion disk with the assumption that turbulence produces
a magnetic field that is predominantly azimuthal. We start with the solution to
the Euler equation for inward viscous transport (Shakura and Sunyaev 1973) in a
Keplerian disk,

2ρHvr
d(�r2)

dr
= 1

r

d(Wrφr2)

dr
(10.68)

where vr is the (positive inward) radial velocity of the gas, H is the height of the
disk,

� =
(

GM

r3

)1/2

(10.69)

is the Keplerian rotational frequency, and Wrφ is the vertically integrated stress.
We assume that vr � r� for all r . The disk height is found by balancing gravity
with the vertical pressure gradient

H = cs/� =
√

2kBT r3

µmpGM
(10.70)

where cs is the isothermal sound speed. The stress is related to the kinematic
shear viscosity ν by

Wrφ = 3νρH�. (10.71)

We assume the stress is dominated by the Maxwell stress so that if we assume the
magnetic energy density scales with the thermal energy density, we have

Wrφ = CρH kBT

µmp
(10.72)
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Figure 10.5. A plot of logarithmic density through the x̂–ẑ plane for a sample
hydrodynamical simulation applicable to Sgr A*. The image is 16 RA � 0.3 pc � 106 rs
on a side. The darkest color corresponds to a number density � 104 cm−3 and white
corresponds to a number density� 102 cm−3. Sgr A* is modeled as a perfectly absorbing
sphere with a radius of 0.1 RA. The 10 wind sources, one of which is visible to the upper
right of Sgr A*, have been blowing for ∼2500 years. See also color section.

where C is a constant scale factor. Numerical MHD simulations suggest C ∼ 0.01
(Brandenburg et al 1995). Note that with these definitions, C = 3α, where α is
the standard Shakura–Sunyaev viscosity parameter (see section 10.3.2). We also
have the disk version of the mass continuity equation

Ṁ = 4πrρHvr. (10.73)

Together, this permits us to write the integral (10.68) as

vr = r T (r)

T0r0/vr0 − (GM)1/2(r1/2
0 − r1/2)(µmp/CkB)

(10.74)
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where the quantities with subscript 0 are evaluated at the outer edge of the disk
(i.e. at radius r0). For (10.74) to represent a physical accretion solution, the
denominator of (10.74) must not reach zero. Letting vr →∞ at the inner edge of
the disk (≡1 rs), we get T0 in terms of r0 and vr0:

T0 = vr0

r0

mpµ(GM)1/2(r1/2
0 − r1/2

s )

CkB
. (10.75)

Turbulence with perturbing wavenumbers k � �/vAz , where vAz is the
Alfven velocity due to the vertical magnetic field, is unstable and generates
a positive feedback loop between the kinetic energy density of the turbulence
and the energy density of the turbulent magnetic field. This ‘dynamo’ turns
off when the two energy densities are in rough equipartition. The net result is
that the equilibrium magnetic energy density is a fraction βB ∼ 0.03 of the
total thermal energy density. Many numerical simulations have verified this
expectation (Hawley et al 1995). Also, the most unstable modes are not damped
by Ohmic diffusion because the diffusion length for gas ∼10 rs from Sgr A* is
extremely small (Melia et al 2001). Given the disparate stellar sources of the
infalling gas, a dominant large-scale ordered magnetic field is unlikely. In such a
case, the turbulent magnetic field will likely dominate the final magnetic energy
density (but see the discussion in section 10.2.2).

It remains to solve the total (magnetic, kinetic, and thermal) energy equation
in order to derive the temperature profile. This requires solving the equation for
thermal energy conservation as well as the magnetic evolution equation in the
presence of Ohmic diffusion and viscous dissipation (Balbus and Hawley 1991):

∂ε

∂ t
+∇ · (vε)− � +�+ P∇ · v = 0 (10.76)

∂B
∂ t
= ∇ × (v × B)− η∇ × (∇ × B) (10.77)

where η is the resistivity of the fully ionized gas (Spitzer 1962). We assume
azimuthal symmetry and incompressibility and neglect radiation pressure and
buoyancy in order to find the steady-state solutions to (10.76) and (10.77). Since
we are not using the relativistic Euler equation, the results will not be strictly valid
near rs; more complicated corrections such as those due to light bending are also
ignored.

The most difficult aspect of determining the accretion profiles is solving for
the steady-state dissipative heating term, �, in terms of the current density and
stress. This requires ignoring the divergence of the viscous and Ohmic fluxes and
taking only the high-order terms. More details are given in Melia et al (2001) but
the resulting differential equation for the temperature is

E1T ′ = E2 + �mp

ρvrkB
(10.78)
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where

E1 = α + 2+ 2βB

µ
− 3Cr�

2µvr
− mpv

2
r

2kBT
+ 3

2
E3

E2 = 2T Cr�

rµvr
+
(

5

2r
v2

r −
GM

2r2

)
mp

kB
− E3T

(
7

2r
− mpµ

√
GMvr

2CkBT
r−3/2

)

E3 = mpv
2
r

kBT
+ Cr�

µvr
. (10.79)

Together with (10.73) and (10.74), equation (10.78) determines the accretion
profile, provided some boundary conditions are given. An example of some
profiles that may be applicable to Sgr A* are shown in figure 10.6. Note that while
spherical accretion is always stable (Moncrief 1980), it has not been determined
whether the disklike profiles given here produce a thermally or dynamically stable
disk.

10.3.1.1 Calculation of the spectrum

We calculate the spectrum due to this Keplerian flow model in a fashion that
parallels section 10.2.4. At a frequency ν0, the predicted observed flux density
produced by the Keplerian flow is given by

Fν0 =
1

D2

∫
Iν0

√
1− rs/r dA (10.80)

where D = 8.5 kpc is the distance to the Galactic Center and the observed
frequency at infinity is now

ν0 = ν
√
(1− rs/r)(1− β2)

1− β cos θ
. (10.81)

The
√

1− rs/r term in (10.80) is due to the gravitational redshift. The frequency
measured in the comoving frame is ν,

β ≡ βφ = r�/c√
(r�/c)2 + 1− rs/r

(10.82)

is the normalized azimuthal velocity seen by a stationary observer, and θ is the
angle between β and the line of sight. Thus,

cos θ ≡ sin i cosφ (10.83)

where i is the inclination angle with respect to the line of sight of the rotation axis
perpendicular to the Keplerian flow, and φ is the position angle of the emitting
element. Figure 10.7 shows a cartoon of the accretion region. The area element is

dA = cos ir dr dφ√
1− rs/r

(10.84)
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Figure 10.6. Example profiles for a Keplerian accretion with magnetic dynamo model for
Sgr A*. Here Ṁ = 1016 g s−1, vr0 = 5×10−4 vkep, C = 0.01, βB = 0.03, and r0 = 5 rs.

and the specific intensity
Iν0 = Bν0(1− e−τ ) (10.85)

where

Bν0 =
(√

(1− β2)(1− rs/r)

1− β cos θ

)3

Bν (10.86)

and Bν is again the blackbody Planck function. The optical depth from the
emitting element to the observer is approximately

τ =
∫
αν ds = jν

Bν

2H

cos i

1− β cos θ√
(1− β2)(1− rs/r)

(10.87)



298 Black hole accretion models for the Galactic Center

i

r0

Figure 10.7. Schematic diagram showing streamlines of infalling gas for the Keplerian
accretion model.

where jν is the emissivity in the comoving frame. Note that the transformations
in these equations implicitly assume that βφ � βr for all r . Given a prescription
for the emissivity, this determines the spectrum.

There are some differences between the derivation here and in section 10.2.4.
The geometry of a disk instead of spherical inflow results in a different treatment
of the optical depth. In a disk there is only local absorption as in (10.85) while in
spherical flow a photon can be absorbed at large radii as can be seen in (10.66).
Also, here we can no longer assume that cosφ = 0. Instead, it is necessary to
explicitly integrate over φ.

An example of a spectrum, assuming an emissivity due to relativistic
magnetic bremsstrahlung from thermal particles (Pacholczyk 1970), is given in
figure 10.8. The input parameters are the same as for the profiles shown in
figure 10.6. With some tuning, this model can reproduce the sub-mm ‘bump’
in the radio emission but has too steep a spectral index, resulting in very little
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Figure 10.8. Example spectrum for a Keplerian accretion model for Sgr A* using the
profiles shown in figure 10.6. Here we use a representative disk inclination of 60◦.

low-frequency emission. As previously stated, this is expected for a thermal
distribution of particles and implies that the low-frequency emission is distinct
from the sub-mm. Perhaps the low-frequency radio emission originates in a small
jet (see chapter 11) or further out in the semi-spherical accretion flow. The X-ray
emission due to thermal bremsstrahlung from the model shown in figure 10.8 is
considerably less than the detected X-ray flux. However, by including inverse
Compton, which upscatters the sub-mm-wave photons, one can reproduce the
observed flux and spectral index of the X-ray emission. The primary conclusion of
this model is that in order to produce consistent radio emission without violating
the IR or X-ray limits, one requires a mass accretion rate at ∼10 rs that is around
three orders of magnitude less than that predicted from the simple Bondi–Hoyle
estimate. Given the good constraints on the large-scale winds, this implies a
strongly radially dependent mass accretion rate. Also, the lower mass accretion
rate results in a higher final radiative efficiency of �7%, about that expected for
accretion disk scenarios.

10.3.2 Sub-Eddington two-temperature accretion (ADAFs)

As in the previous section, we consider an axisymmetric steady-state disk
accretion flow. The mass continuity equation and disk scale height are still given
by (10.73) and (10.70). However, the azimuthal velocity is no longer assumed to
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be given by the Keplerian velocity so that

vφ ≡ rω �=
√

GM

r
. (10.88)

Thus, the non-relativistic equation for the radial velocity now has an extra
centrifugal force term compared to (10.37):

vrv
′
r +

1

ρ
P ′ − ω2r + GM

r2
= 0. (10.89)

For simplicity, we will deal only with the non-relativistic equations in this section.
Again, vr is defined positive for inflow. In this model, we ignore the dynamical
effects of the magnetic field. The shear viscosity, ν, is still given by (10.71) and
(10.72) but is now written as

ν ≡ αcs H = αc2
s /� (10.90)

where α is the r -independent α-viscosity parameter (Shakura and Sunyaev 1973)
and now cs is the isothermal sound speed (c2

s ≡ P/ρ = 2kBT/mp). Note that
in section 10.3.1, α � 0.003. This viscosity causes a change in ω with r which
follows from the vertically integrated form of the azimuthal component of the
Euler equation:

vrρr H
d(ωr2)

dr
+ d

dr

(
νρr3 H

dω

dr

)
= 0. (10.91)

Compare (10.91) with the less general (10.68); both equations assume that the
flow is viscous and therefore reduce to unphysical results (ω ∝ r−2) in the limit
of ν → 0. Using the first law of thermodynamics, written as

mpT ds = kB dT

γ − 1
− kBT

dn

n
(10.92)

where s is the specific entropy and assuming a constant γ and µ = 0.5, we can
rewrite (10.50) as

mpT s′ = 2kBT ′

γ − 1
− 2kBT n′

n
= �− �

nvr
(10.93)

where again a prime (′) denotes d/dr . Here, we ignore magnetic heating and
instead assume that the heating is purely due to an anomalous shear viscosity so
that

� = ρνr2
(

dω

dr

)2

. (10.94)

It is the ratio η ≡ �/� which determines the type of accretion flow: η � 1
corresponds to the standard thin-disk solution, η � 1 corresponds to the flow
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discussed here, and η � 1 corresponds to Bondi-type solutions. All three types
may be present near Sgr A*. In this section, we are interested in solutions in
which the viscous heating rate � is much greater than the radiative cooling rate
�; for the Keplerian model discussed in section 10.3.1, �/� � 1 except very
close to the outer edge of the flow. The η � 1 solutions, it turns out, require
sub-Eddington mass accretion rates and a two-temperature plasma with hot ions
and cool electrons. These models are known as Advection Dominated Accretion
Flows (ADAFs; see Narayan et al 1998) because the ions of the gas are heated by
viscous dissipation and accretion occurs before the cooler electrons can radiate.
Bondi–Hoyle-type solutions also advect most of their energy without radiating
(thus the low radiative efficiency described earlier) so the term ADAF is slightly
misleading.

If we further assume (Ichimaru 1977, Narayan and Yi 1994, Narayan et al
1998) that �→ 0 and α is constant with r , we find a self-similar solution exists.
That is, n, T , v, and ω can be given by simple power laws: ρ ∝ r−3/2, v ∝ r−1/2,
T ∝ r−1, and ω ∝ r−3/2. In particular, if A ≡ ω/� and the Keplerian velocity is

vK ≡ r� =
√

GM

r
(10.95)

then (10.89), (10.91), and (10.93) become

v2
r

2
+ (A2 − 1)v2

K +
5

2
c2

s = 0 (10.96)

vr = 3αc2
s

2vK
(10.97)

and

c2
s =

(γ − 1)A2v2
K

5/3− γ . (10.98)

Solving these three equations and (10.73) and taking the limit α � 1 gives:

vr = vK
γ − 1

γ − 5/9
α (10.99)

c2
s =

2(γ − 1)v2
K

3(γ − 5/9)
(10.100)

ω = �
√

2(5/3− γ )
3(γ − 5/9)

(10.101)

and

ρ = Ṁ

α4πr3�

√
3(γ − 5/9)

2(γ − 1)
. (10.102)

These results are similar to the profiles derived for spherical Bondi-type accretion.
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In most ADAF models, it is generally assumed that a perfectly tangled
magnetic field exists with a magnetic pressure that is comparable to the thermal
pressure. A purely tangled field results in an added specific internal energy density
term of B2/8πρ and a radial pressure term of B2/24π ; this pressure is assumed
to be a constant fraction (1 − βB) of the total (thermal plus magnetic) pressure
(note the difference in definition of this βB from that in section 10.3.1). Then we
have

Ptot = B2

24π
+ Pth = B2

24π
+ βBρc2

s =
B2

24π
+ nkB

(
Ti

µi
+ Te

µe

)
(10.103)

where Pth is the thermal component of the pressure and Ti and Te are the ion and
electron temperatures (assumed equal at this point). For simplicity we assume a
hydrogen mass fraction of one so that the mean molecular weights of both the
ions or protons, µi, and electrons, µe are unity. The magnetic field changes the
effective value of γ so that if it is assumed that the hydrodynamical adiabatic
index, γad = 5/3, then

γ = 8− 3βB

6− 3βB
. (10.104)

This treatment of the field is not fully accurate since even a tangled field will also
result in some resistance to the shear viscosity. In addition, the Balbus–Hawley
magneto-rotational instability (Balbus and Hawley 1991) will probably eventually
result in a magnetic field with a dominant azimuthal component. In the following,
βB = 0.5.

A problem with self-consistency arises at this point: do the profiles given by
(10.99)–(10.102) actually result in � � �? Substituting the self-similar results
into (10.94) gives

� =
√

3(γ − 1)

2(γ − 5/9)

3ṀGM

8πr4 . (10.105)

Similarly, assuming cooling is due to thermal bremsstrahlung (Rybicki and
Lightman 1979) gives (in cgs units):

� = 6.7× 1016

32π2α2

√
3(γ − 5/9)

γ − 1

Ṁ2

√
GM

r−3/2. (10.106)

Therefore we get:

η = 7× 10−27γ − 5/9

γ − 1

α2 M3/2

r1/2Ṁ
. (10.107)

We parametrize the mass accretion rate with f ≡ Ṁ/ṀE, so that Ṁ = f ×
1024M6 g s−1, where ṀE is the accretion rate that, with 10% efficiency, produces
the Eddington-limited luminosity (see section 10.2.3), and M6 is the mass of the
black hole in units of 106M�. Then in order to have an ADAF solution, we must
have

f � 10−7α2r−1/2
o (10.108)
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where here ro is the outer boundary of the flow in units of rs. If one includes
magnetic bremsstrahlung and Compton cooling, f must be even smaller than
the limit given in (10.108). Therefore, it is unlikely that large-scale single-
temperature ADAFs exist except in rare circumstances where the accretion rate
is particularly low.

The usual way around this difficulty is to assume that the cooling is not given
by (10.106) because the temperature of the radiating electrons, Te, is not the same
as that of the bulk of the gas. It is argued that viscous heating applies primarily
to the massive ions and the Coulomb coupling between the hot ions and cool
electrons is sufficiently weak to result in a so-called ‘two-temperature plasma’.
Ideally, such a problem should be solved using a full two-fluid approach, but for
simplicity we shall just assume that � → 0 for the ions and solve explicitly for
the ion and electron temperatures. Thus, instead of (10.93), Ti is given by (Esin
et al 1997)(

3(1− βB)

βB
+ α(θp)+ Ti

dα (θp)

dTi

)
T ′i =

Tin′

βBn
− �µi

kBnvr
(10.109)

and(
3(1− βB)

βB
+ α(θe)+ Te

dα (θe)

dTe

)
T ′e =

Ten′

βBn
+ (�− �me/mp − �ie)µe

kBnvr
(10.110)

where

α(x) = x

(
3K3(x)+ K1(x)

4K2(x)
− 1

)
. (10.111)

After some manipulation, it can be shown that

dα (θe)

dTe
= (1+ α)(3− α)

Te
+ (3− 2α)θe

Te
. (10.112)

The heating of the electrons due to Coulomb coupling with the ions, �ie, is given
by (Stepney and Guilbert 1983)

�ie = 30n2σTc
me

mp

kBTi − kBTe

K2(1/θe)K2(1/θp)

(
2(θe + θp)

2 + 1

θe + θp
K1(ζ )+ 2K0(ζ )

)
.

(10.113)

The Ki are the modified Bessel functions, σT is the Thomson cross-section,
θe ≡ kBTe/mec2, θp ≡ kBTi/mpc2, and ζ ≡ (θe + θp)/θeθp. It is assumed in
(10.113) that the Coulomb logarithm is �20. Since it is assumed that Ti > Te
everywhere, there is no direct feedback from the electrons to the ions; since
ρc2

s ≡ Ptot, there is indirect feedback. The profiles for the gas radial velocity,
rotational frequency, and density are still given by (10.99), (10.101), and (10.102),
respectively but with T = Ti. Note that in earlier work (Narayan and Yi 1995a)
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Figure 10.9. Examples of electron temperature profiles for a two-temperature ADAF.
Here, βB = 0.5, �i = 0, α = 0.1, γad = 5/3, and ro = 105rs. The curves correspond to
different values of log10( f ): −4 (full), −5 (dotted), −6 (dashed), −7 (dot–dashed), and
−8 (chain dot–dashed).

the electrons were assumed to be in isentropic balance so that the left-hand side
of (10.110) was set to zero.

The existence of a two-temperature ADAF solution now depends on the
Coulomb coupling timescale compared to the accretion timescale. A detailed
calculation shows that as long as f � 0.3α2, a two-temperature ADAF solution
exists. Representive profiles for Te are shown in figure 10.9 with α = 0.1. For
this plot, the assumption that α � 1 has been relaxed. Also, radiation pressure
and the optical depth are assumed to be negligible. The cooling function for
the electrons includes magnetic bremsstrahlung, thermal bremsstrahlung (both
electron–electron and electron–ion), and line cooling but not inverse Compton
scattering. For large accretion rates, the last could result in significant cooling
within �10 rs (Mahadevan 1997). For comparison, the ion temperature goes as
r−1 and Ti � 1010 K at r = 100 rs. The flow is subsonic everywhere with a
Mach number of ∼0.07; for comparison, the Keplerian model in section 10.3.1
has a Mach number of ∼0.5. Thus, both models have implicitly assumed that the
flow goes supersonic infinitesmally close to the event horizon. More advanced
numerical ADAF models have addressed this issue with more appropriate inner
boundary conditions (Narayan et al 1997, Gammie and Popham 1998).

Since the gas flow in an ADAF is fairly similar to the Keplerian flow
described in section 10.3.1, the prescription for determining the spectrum detailed
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Figure 10.10. Example spectrum for a two-temperature ADAF accretion model for Sgr A*
using the profiles shown in figure 10.9. Here we use representative values of α = 0.3 and
f = 10−4. The flow is inclined 60◦ to the line of sight.

in section 10.3.1.1 can be used if one assumes the ions play no role in the
emission. The resulting spectrum for α = 0.3 and f = 10−4 is given in
figure 10.10. The accretion rate for this model is Ṁ = 4×1020 g s−1, much larger
than the accretion rate used in the Keplerian model which produces the spectrum
shown in figure 10.8. The lower electron temperature results in less magnetic
bremsstrahlung (even though the magnetic field for an ADAF is stronger since
it is tied to the high-temperature ions). Also, for this representative case, the X-
ray spectrum due to thermal bremsstrahlung from large radii is somewhat higher
than the observations and in any case does not match the spectral index. We
have ignored the fact that the magnetic field in an ADAF is assumed to be purely
tangled while the field in the Keplerian flow is assumed to be purely azimuthal;
the same magnetic bremsstrahlung emissivity has been used.

10.3.2.1 Comments on ADAFs

Except for the requirement that there be a large amount of angular momentum
in the accreting gas, the properties of the flow at infinity have little impact on
the structure and spectrum of ADAFs, making for very straightforward modeling.
With fixed ion–electron coupling and viscosity, the primary free parameter is the
mass accretion rate. The flow is purely determined by shear viscosity. In fact, it
is explicitly assumed that viscosity is important, or else vr → 0 and no accretion
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occurs. Also, it has been pointed out (Narayan and Yi 1995a) that the Bernoulli
parameter of ADAFs is positive, meaning that the gas has positive energy at
infinity. Thus, it is possible that ADAFs occur in conjunction with some sort
of outflow.

Both the Keplerian model and the ADAF model presented here do not satisfy
general relativistic inner boundary conditions. For example, since a black hole
cannot support shear stress, the torque at the event horizon must be zero (Gammie
and Popham 1998). And although the spectral calculations might be general
relativistic, the dynamical equations for both models are not. Calculations using
pseudo-Newtonian gravity so that = −GM/(r−rs) and�2 = GM/(r(r−rs))

have been done for ADAFs (Narayan et al 1997, Chen et al 1997) even in a Kerr
metric where the black hole is no longer assumed to be non-rotating (Gammie
and Popham 1998). Deviations within ∼5 rs are significant but do not appear to
change the resulting spectrum substantially.

With (10.93) and the condition that � � �, it is seen that the entropy of
the accreting gas in an ADAF increases as it falls inward. Thus, according to
the Schwarzschild condition, ADAFs are unstable to convection (Narayan et al
2000). Calculations of ADAFs which include hydrothermal convection (Quataert
and Gruzinov 2000) show that angular momentum is transported inward, resulting
in a flatter density profile (ρ ∝ r−1/2) (CDAFs, convection dominated accretion
flows). However, while some MHD calculations confirm this (Igumenshchev and
Narayan 2002), others show that in the presence of turbulent magnetic fields, the
net result of convection is to transport angular momentum outward (Hawley et al
2001). So although it is not certain what the effect of convection is when both
resistive and viscous heating are present, it does appear that ADAF models which
include convection without a more complete handling of the magnetic field are
not self-consistent (Balbus and Hawley 2002).

A fundamental assumption of two-temperature ADAFs is that viscous
heating followed by rapid accretion leads to a decoupling of the ions from the
electrons. Although it has been shown that the Coulomb coupling itself may
be too weak to maintain a thermal equilibrium, other mechanisms may prevent
the formation of a two-temperature plasma. For example, Alfvénic turbulence
or plasma waves in the presence of a magnetic field in thermal equipartition
preferentially heats the electrons (Begelman and Chiueh 1988, Quataert and
Gruzinov 1999). If such turbulence is due to collisionless shocks, the resulting
heating rate will exceed the Coulomb rate, �ie, if M � 3×104 M� (Narayan and
Yi 1995b). Thus, although ADAFs may be applicable to XRBs, for Sgr A*, where
M = 2.6× 106 M�, it is not at all clear that a stable large-scale two-temperature
plasma develops.



Comment on X-ray emission from Sgr A* 307

10.4 Comment on X-ray emission from Sgr A*

The X-ray emission from Sgr A* is rather weak in quiescence with Lx � 0.5 L�
in the Chandra band of 2–10 keV. However, Sgr A* has been observed to flare at
least once for a few hours, reaching a peak luminosity of �25 L� (Baganoff et
al 2001a). The flare had a distinctively harder spectrum, with the spectral index
α changing from �1.2 to �0.3 (Lν ∝ ν−α). The spectral index, variability, and
flux of both states place significant constraints on Sgr A* accretion models. For
example, the quiescent spectral index is probably too soft to be due to thermal
bremsstrahlung emission alone (Liu and Melia 2002); it is more likely due to
Comptonization of the radio synchrotron photons (SSC). On the other hand, it
is not clear whether the flare emission is due to thermal bremsstrahlung (Liu and
Melia 2002) or SSC (Falcke and Markoff 2000). In any case, significant SSC only
occurs if the peak electron temperature � 1010 K, a temperature ADAF models
do not reach. A possible solution to this is a combination ADAF plus jet model,
which reproduces the observed spectral indices and fluxes of both states rather
well (Markoff et al 2001). Future simultaneous multi-wavelength observations
should determine whether thermal bremsstrahlung, which is extended and mostly
decoupled from the radio emission, or SSC, which is directly tied to the sub-mm
emission, is dominant for Sgr A*.

10.5 Summary

The Galactic black hole has a mass (∼106 M�) that is in between that of AGNs
(�107 M�) and XRBs (�10 M�), so one naturally thinks of it as a transition
type object. Although some nuclear activity is stellar, the term ‘low luminosity
AGNs’ (LLAGNs) has been used to describe galactic nuclei that appear to contain
‘baby’ supermassive black holes, such as Sgr A*, which are accreting at a rate
that is significantly sub-Eddington (Nagar et al 2000). However, explaining the
spectrum of these objects has proven to be a bit tricky. For example, for other
LLAGNs, the radio emission does not appear to be from ADAFs but rather
jets (Falcke et al 2000, Ulvestad and Ho 2001). In the case of Sgr A*, the
magnetic bremmstrahlung emission may be self-absorbed so an ADAF may still
be applicable.

Since XRBs, AGNs, and even LLAGNs (Nagar et al 2001) generally have
jets, it is natural to expect Sgr A* to have one—but it is the apparent absence of
such a jet and any accompanying accretion disk which sets Sgr A* apart from
other black hole systems. Although there is evidence that Sgr A* is asymmetric
on the scale of less than a few AU or �102 rs (Lo et al 1999), there is as
yet no evidence for any outflow. Perhaps what truly sets Sgr A* apart is its
diet: if no clear plane is defined by the wind sources so that on the average
there is little angular momentum in the flow, no large accretion disk will form
and even a small one may be unstable on fairly short timescales. Yet, since
the flow almost certainly has some residual angular momentum, some sort of



308 Black hole accretion models for the Galactic Center

circularization region probably exists. Where there are disklike structures, there
are often jets.

The accretion picture for the Galactic black hole is far from clear. At this
point, photon scattering and absorption, relativistic corrections, and magnetic
fields are all treated fairly simply; more detailed models might improve on these.
Nonetheless, it seems that the true picture contains some combination of large-
scale spherical accretion plus a circularization region (which may or may not
form a true disk) and perhaps a small-scale jet.
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Chapter 11

Radio and X-ray emission from the
Galactic Black Hole

Heino Falcke
Max-Planck-Institut für Radioastronomie, Bonn, Germany

Finally, the radio properties of the Galactic Center black hole (Sgr A*) are
reviewed: variability, size and position, spectrum, and polarization. Radio and X-
ray emission are discussed within the framework of black hole plasma jet models
and simple equations for the emission are derived. It is also shown that the radio
emission can be used to actually image the event horizon of the black hole in the
near future.

11.1 Introduction

We have already seen in chapter 8 that the evidence for the presence of a dark mass
in the Galactic Center is very strong. A central point mass of about 3× 106 M�
seems to coincide with the compact radio source Sgr A* (figure 11.1). The
existence of Sgr A* has always been considered a good sign for a black hole
itself. In fact, based on analogous detections of compact radio cores in the nuclei
of active galaxies, the existence of Sgr A* was predicted by Lynden-Bell and
Rees (1971). Balick and Brown (1974) detected the source in one of the early
VLBI (Very Long Baseline Interferometry) experiments and a couple of years
later named it Sgr A* (by simply adding an asterisk to the name of the nuclear
radio region Sgr A—see Palmer and Goss (1996) for an account of the history of
naming sources in the Galactic Center).

Ever since, Sgr A* has been the focus of great attention. From the near-
infrared speckle observations (chapter 8) we know that it is at the very center
of the gravitational potential. However, until today one remains unsure about
the exact nature of the detected emission in radio and X-ray bands. However,
understanding the radiation spectrum of Sgr A* will have important implications
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Sgr A*

Figure 11.1. VLA radio map of Sgr A West, a spiral-like pattern of thermal ionized gas
that appears to be falling into the very center of the galaxy. Near its center is Sgr A*, a
pointlike radio source that many suspect is the nucleus of the Milky Way and indicates the
presence of a black hole. Figure courtesy of K Y Lo. See also color section.

for all other supermassive black holes, since most galaxies will have black holes
that are as inactive as the Galactic Center and we are investigating the low-power
end on the black hole activity scale. In fact, surveys have shown that a large
number of nearby galaxies host radio sources very similar to Sgr A* in our Milky
Way (Wrobel and Heeschen 1984, Nagar et al 2000, Falcke et al 2000). Hence,
what we learn about Sgr A* is quite typical for the (rather silent) majority of black
holes in the universe.

In the following section we will attempt to summarize the main radio
properties of the ‘Galactic Black Hole’. In the subsequent sections we will try
to explain the main emission characteristics of Sgr A* in an almost back-of-the-
envelope fashion. Finally we will look ahead to how this source could finally
make the theoretical concept of an event horizon observable in the near future. A
comprehensive review of this can be found in Melia and Falcke (2001).

11.2 Radio properties of Sgr A*

Most of the direct information about Sgr A* is available at radio wavelengths.
This includes the total intensity spectrum, the variability, the polarization, and the
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Figure 11.2. The Green Bank Interferometer (GBI; left) which was instrumental in
detecting Sgr A* and the Very Large Array (VLA; right). Both interferometers are operated
by the National Radio Astronomy Observatory (NRAO) in the United States and were
extensively used to monitor the variability of Sgr A*.

source structure. In the following we will go through these various issues step by
step.

11.2.1 Variability of Sgr A*

The first evidence for a a very compact structure in a radio source often comes
from its variability. And indeed soon after its discovery, Sgr A* was established
as a variable source (Brown and Lo 1982) and extended campaigns were set up to
monitor this variability. The most extensive data sets were obtained using the Very
Large Array (VLA) and the Green Bank Interferometer (GBI; see figure 11.2).
The most recent data from these instruments are presented in Zhao et al (2001)
and Falcke (1999). The amplitude of variability can reach up to 200% for strong
flares. The degree of variability seems to increase with increasing frequency.
Strong flares seem to occur on timescales of 100 days (see figure 11.3). Zhao et al
(2001) even claim to have found a periodicity of 106 days on which such strong
flares occur regularly. The shortest timescale of radio variability was probably
found by Bower et al (2002a) at 15 GHz: 20% within 1 h.

Some of the radio variability may be due to scintillation due to a
foreground screen (see p 315), but at least the large-amplitude flares at higher
radio frequencies are most likely to be intrinsic. The fastest variations are
fundamentally limited by the source size. We can then convert the measured
timescale τ and amplitude�S/S of the variability into a limit on the characteristic
size R of Sgr A*. For a given maximum signal speed vmax � c in the emitting
plasma, one obtains

R < (�S/S)−1τ × vmax. (11.1)

For (�S/S) = 20% and τ = 1 hr we get R < 5 × 1014 cm × (vmax/c),
which is 36 Astronomical Units (AU) or 4.5 milli-arcseconds (mas) at the Galactic
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Figure 1

Figure 11.3. Variability of Sgr A* as observed with the VLA at different wavelengths
(given in the top left-hand corner of each frame). From Zhao et al (2001).

Center distance of 8 kpc. Based on the variability timescale alone the radio
emission therefore has to come from a region smaller than a planetary system.
In fact, as we will learn in the next section, direct radio imaging shows that the
emission comes from an even smaller scale.

Alternatively, taking the much longer 100 day timescale we find a
characteristic size of R < 2.7 × 1017 cm × (vmax/c) or 2.3 arcseconds. This
is relatively large and does not appear to be a useful limit for the size of Sgr A*. It
is more likely that this variability signals some other underlying physical process,
e.g. a process related to the accreting material powering the source.

If the accreting gas is in orbit around the central point mass M• the
characteristic velocity will be set by Keplerian velocity1 v = √GM•/R and the
corresponding timescale is set by τ = 2πR/v, yielding

R ≈
( τ

2π

)2/3
(GM•)1/3 = 0.9× 1015 cm

(
τ

106 days

)2/3( M•
3× 106M�

)1/3

.

(11.2)
1 Note that the sound speed of infalling gas in optically thin accretion models is typically of similar
order and hence the same numbers apply.
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This corresponds to about 1000 Schwarzschild radii or 8 mas. The accretion
radius (chapter 10) of the hot X-ray gas in the Galactic Center is somewhat
further out, but it is not impossible that instabilities in the capture process of
surrounding gas by the black hole are the ultimate source of the slow, large-
amplitude variability. If the flares are indeed periodic as claimed by Zhao et al
(2001), then one probably has to think of a star orbiting Sgr A* at this distance
which modulates the accretion flow.

However, in stellar mass black holes, quasi-periodic signals are often related
to beat and precession frequencies of accretion disks close to the black hole. If
true, this can be used to derive information about the black hole spin. Such a
scenario has been considered by Liu and Melia (2002). Based on such a model and
the 100 day periodicity, they derive a black hole spin parameter (e.g. section 11.4)
of Sgr A* of a � 0.1. It is difficult to assess which of these interpretations is
correct.

The fastest variations are expected at the shortest wavelengths, since high-
frequency emission—in essentially all models for Sgr A*—is typically produced
at the smallest scales. The problem with high-frequency measurements of Sgr A*
is that these observations are extremely sensitive to weather and the low elevations
of the source encountered in typical observations from the northern hemisphere.
Because of the large confusing flux in the Galactic Center, interferometers have
to be used. The flux density measured on an interferometer baseline can be
artificially reduced by rapid changes in the atmospheric opacity and loss of
coherence (of instrumental or atmospheric origin) which are difficult to track.
Early observations (Wright and Backer 1993, Zylka et al 1995) already indicated
possibly strong variations in the sub-millimeter wavelength region. This was
later strengthened by Tsuboi et al (1999) and very recently Zhao et al (2001)
claim relatively strong sub-millimeter flares in Sgr A* from measurements with
the sub-millimeter array (SMA) in Hawaii. These results will certainly become
increasingly important in the years to come since, as we will see later, this
emission most certainly comes directly from the immediate environment of the
event horizon.

11.2.2 Size of Sgr A*—VLBI observations

A major issue for a long time has been the exact size and structure of Sgr A*.
In extragalactic sources the VLBI technique has allowed one to probe deep into
the hearts of active galactic nuclei (AGNs) and to resolve the radio structures
into relativistically outflowing plasma jets (see, e.g., Zensus 1997). In a VLBI
experiment radio telescopes distributed over a continent or the entire world are
synchronized by atomic clocks and jointly observe one source. The incoming
radio waves are digitized and stored (usually on magnetic tapes). Later, the
digitized waves are correlated in a specialized computer recreating a virtual
interferometer. Such a virtual interferometer will have a spatial resolution similar
to that of a giant telescope with the diameter of roughly the separation of the
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Figure 11.4. The major source axis (filled circles) of Sgr A* and the minor source
axis (open diamonds) as measured by VLBI plotted versus wavelength (adapted from
Krichbaum et al 1999). The inclined lines show the λ2 scattering law and the horizontal
line shows the size scale expected for the visual imprint of the event horizon (Falcke et al
2000).

individual telescopes (called ‘baselines’). This technique has yielded by far the
highest-resolution images in astronomy (i.e. <50 µarcseconds at 86 GHz). The
image quality improves with the number of participating telescopes and the two
major VLBI arrays today are the European VLBI Network (EVN) and the Very
Long Baseline Array (VLBA) in the United States.

Of course, a prominent source such as Sgr A* has been a prime target for
VLBI experiments over the last 25 years. It is from these observations that we
have direct information on the size of the source—or at least have very tight upper
limits.

It was, however, quickly realized that, despite its relative proximity, detecting
the true structure of Sgr A* is unusually difficult compared to other galactic
nuclei. The reason is that interstellar material in the line-of-sight towards the
Galactic Center scatter broadens the VLBI image. This produces a characteristic
λ2 law (e.g. Scheuer 1968) for the size of Sgr A* as a function of the wavelength
λ (Davies et al 1976, van Langevelde et al 1992, Yusef-Zadeh et al 1994, Lo et al
1998). The scattering size apparently has not changed over a decade (Marcaide et
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Figure 11.5. Contour plots of VLBA images of Sgr A* at wavelengths of λ = 6.0, 3.6, 2.0,
1.35, and 0.7 cm. These images are smoothed to a circular beam of FWHM = 2.62λ1.5

cm
mas as shown at the bottom left-hand corner on each image. The contours are 2 mJy
beam−1 × (−2, 2, 4, 8, 16, 32, 64, 128, 256). Figure from Lo et al (1999).

al 1999). For that reason the intrinsic size and structure of Sgr A* has remained
obscure until today (figures 11.4 and 11.5). The measured size of Sgr A* is given
by (Lo et al 1998)

θminor = 0.76 mas(λ/cm)2 θmajor = 1.42 mas(λ/cm)2. (11.3)

The front line of this research is currently at wavelengths of 7 mm and
shorter. Lo et al (1998) and Krichbaum et al (1993, 1998) claim to have seen
evidence for a deviation from the scattering law at these wavelengths. Other
experiments did not directly confirm this (Rogers et al 1994, Bower and Backer
1998, Doeleman et al 2001). The main problem is that Sgr A* is never above
25◦ elevation at the VLBA and mm-VLBI is strongly affected by the variable
atmosphere. Significant distortions of the phase (of the radio waves) can happen
on timescales of 10 s at the short wavelengths. Therefore mm-VLBI observations
of Sgr A* are difficult to calibrate and are always subject to intense scrutiny and
nagging doubts.

However, the rapid variability of Sgr A* with timescales of 10 minutes (X-
rays) to 3 h (15 GHz radio) suggests that time-variable structure may exist on
similarly short timescales. We can estimate a scale for adiabatic cooling of a
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plasma by using equation (11.3), convert to a linear size at the Galactic Center
distance DGC = 8 kpc, and divide by the maximal sound speed of a relativistic
plasma (photon gas; see, e.g., Königl 1980) cs = c/

√
3. We get

tcool � θmajorDGC/cs = 1.3 h

(
λ

7 mm

)2

. (11.4)

Hence, if for example, matter is ejected during one of the big X-ray flares near the
black hole it could, in principle, cool and fade away within a few hours at most
radio wavelengths2. Consequently, there is no reason why VLBI observations
separated by one day will always look the same.

11.2.3 Position of Sgr A*

The exact location of Sgr A* is a very important factor for its interpretation. This
allows one to investigate whether the source is indeed in the Galactic Center (and
not behind) and to set a lower limit on its mass. The position can be determined
relatively accurately with radio observations.

This requires the use of so-called ‘phase-referencing’ observations. In this
type of experiment the telescopes of a VLBI array are switched rapidly from one
source to another, where both sources should be within one isoplanatic patch of
the atmosphere (typically 1◦–5◦). Within this patch the radiation passes roughly
through the same atmospheric irregularities. The switching also has to happen
within the coherence time of the atmosphere—at mm wavelengths the telescopes
switch sources every 10 s. The phase difference of the incoming wavefronts
between the two observed sources can then be used to determine the relative
positions of the sources. By fixing a grid of phase-referenced sources—radio
quasars at cosmological distances—one can then establish an absolute coordinate
system, called the International Celestial Reference System (ICRF; see Ma et
al 1998). Since 1997 the ICRF has been the fundamental reference system for
astronomy as adopted by the International Astronomical Union (IAU).

Attempts have been made to relate the absolute position of Sgr A* to bright
background quasars. The averaging of VLA observations by Yusef-Zadeh et al
(1999) yielded a position for Sgr A* at the epoch 1992.4 of

α(1950) = 17h42m29.3076s ± 0.0007s, δ(1950) = −28◦59′18.484′′ ± 0.014′′

(11.5)

α(2000) = 17h45m40.0383s ± 0.0007s, δ(2000) = −29◦00′28.069′′ ± 0.014′′.
(11.6)

A position using VLBA observations was also derived by Rogers et al
(1994), which agrees with this position within 0.2′′. In yet another experiment
2 Note that equation (11.4) is based solely on the observed upper limit on the source size. Most
models suggest that the intrinsic size of Sgr A* grows less rapidly than λ2 (e.g. linearly) and hence
the cooling timescale would grow accordingly more slowly.
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Figure 11.6. Position of Sgr A* relative to a background quasar (J1745–283) on the plane
of the sky determined from VLBA observations. North is to the top and East to the left.
Each measurement is indicated with the date of observation and 1 − σ error bars. The
broken line is the best-fit proper motion, and the full line gives the orientation of the
Galactic plane. Figure from Reid et al (1999).

Menten et al (1997) were able to relate the position of Sgr A* to the position of
the near-infrared stars (emitting a radio line) surrounding it. This allows one to
locate Sgr A* in a near-infrared image and try to find a counterpart.

Finally, one can also measure the relative position of Sgr A* with respect
to faint background quasars which are much closer than the ICRF reference
sources. Assuming that these sources are without motion on the sky (because
of their cosmological distances), Reid et al (1999) (figure 11.6; see also Backer
and Sramek 1999) find a proper motion for Sgr A* of −3.33 ± 0.1 mas yr−1

(E) and −4.94 ± 0.4 mas yr−1 (N), corresponding to −5.90 ± 0.35 mas yr−1

and +0.20 ± 0.30 mas yr−1 in Galactic longitude and latitude. This agrees
very well with the apparent motion expected for a source at the Galactic Center
due to the Galactic rotation of the solar system (220 km s−1). This implies
that Sgr A* is indeed at the center of the Galaxy and has very little motion
of its own (vSgr A∗ < 15 km s−1). This is interesting, since in chapter 8 it was
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shown that stars near Sgr A* move in the deep potential well with velocities
up to 1500 km s−1. The most likely reason for this is, of course, that Sgr A*
itself causes this potential well. One can use the assumption of equipartition of
momentum between the fastest stars (m∗v∗) and Sgr A* (MSgr A∗ vSgr A∗) to infer
a lower limit on the mass of Sgr A* from the VLBI proper motion studies:

MSgr A∗ � 1000 M�
(

m∗
10 M�

)( v∗
1500 km s−1

) ( vSgr A∗

15 km s−1

)−1
. (11.7)

Numerical modeling of n-body interactions suggests that under most
conditions this lower limit can be as high as 105 M� (Reid et al 1999). This
mass is way beyond those of any stellar object and hence it is very reasonable to
assume that essentially all the dark mass of 2–3× 106 M� is concentrated inside
Sgr A*—the radio source.

11.2.4 Radio spectrum of Sgr A*

A major input for modeling the nature of the central black hole candidate of our
Galaxy is the emission spectrum. Typical luminous black holes, e.g. those in
quasars, emit over a broad range in frequencies. In contrast, for Sgr A* only radio
emission was reliably detected over many years, with the late addition of X-ray
emission. One reason for this dimness is certainly the low accretion rate and quite
plausibly the presence of a radiatively deficient accretion flow (chapter 10).

At frequencies below 1 GHz the spectrum is essentially undetermined. First
of all, the scattering size of Sgr A* becomes larger than 1 arcsecond and the
source starts to blend with its surroundings. Second, the Sgr A complex becomes
optically thick at low frequencies (Pedlar et al 1989) and Sgr A* may be obscured.
It is also possible, but less likely, that the claimed low-frequency turnover in the
spectrum (Davies et al 1976) has an intrinsic nature.

At higher frequencies the radio spectrum of Sgr A* has been measured with
great accuracy in various campaigns up to the THz regime (e.g. Wright and Backer
1993, Zylka et al 1995, Serabyn et al 1997, Falcke et al 1998). Since the source
is variable (see figure 11.3), it is useful to consider either simultaneous or time-
averaged spectra. Such an average spectrum is shown in figure 11.7 compiled
by Melia and Falcke (2001). The overall radio spectrum is slightly inverted,
i.e. it has a positive spectral index (α � 0.2, Sν ∝ να) in the GHz regime.
The average radio flux density is around 1 Jy. At the highest radio frequency
(�100 GHz), the spectrum seems to become even more inverted until it abruptly
cuts off somewhere in the far-infrared. This upturn and subsequent cut-off has
been interpreted as an effect of the finite size of the central object with a size
scale as expected for a 3 × 106 M� black hole (e.g. Falcke and Biermann 1994
and later). The up-turn in the spectrum at sub-mm wavelengths is often referred
to as the ‘sub-mm bump’.
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Figure 11.7. Time-averaged spectrum—flux density versus frequency—of Sgr A* from
radio to the near-infrared as compiled by Melia and Falcke (2001). The error bars in the
radio regime indicate variability (one standard deviation).

11.2.5 Polarization of Sgr A*

Finally, as a relatively recent development, the polarization properties of Sgr A*
are now relatively well established. For a long time it was generally thought that,
in marked contrast to more luminous AGNs, Sgr A* was unpolarized. This is true
for linear polarization in the GHz radio regime. Bower et al (1999a) found an
upper limit of ≤0.1% to the linear polarization at cm waves; however, they also
found plenty of circular polarization.

The results for linear polarization at low frequencies were obtained with a
rarely used technique in radio astronomy, called spectro-polarimetry. This allows
one to look for polarization in small frequency bands. Usually in continuum
observations one averages the polarization of the radiation over the available
bandwidth δν. However, since Sgr A* may be embedded in a dense plasma,
Faraday rotation in the accretion flow or a foreground Galactic screen could lead
to a rotation of the linear polarization vector even within the small bandwidth.

Faraday rotation is produced when radio waves pass through an ionized and
magnetized medium. Since left and right circularly polarized waves have different
refractive indices for a given magnetic field orientation, a wavelength-dependent
delay is induced that rotates the position angle φ of the linear polarization vector
by an amount

�φ = RMλ2. (11.8)
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The parameter RM is called the rotation measure and can be determined by
measuring the position angle of the linear polarization vector φ at different
wavelengths. For a given frequency bandwidth δν, significant de-polarization is
obtained if �φ ∼ 1 rad. Hence, for a typical VLA bandwidth of �ν = 50 MHz
at 4.8 GHz a rotation measure of RM = 104 rad m−2 of any foreground
material would destroy any intrinsic polarization signal. Such a value for RM
is large compared to what is seen in other AGNs but cannot be excluded in the
Galactic Center. By Fourier-transforming spectro-polarimetric data (to look for
periodic signals due to the fast rotation of the polarization vector as a function of
frequency), Bower et al (1999a) were able to set the 0.1% limit and also exclude
rotation measures below RM � 107 rad m−2 for a homogeneous foreground
screen as the cause for the low polarization.

Later, Aitken et al (2000) made linear polarization observations with a single
dish sub-millimeter wave telescope and found ∼10% linear polarization above
150 GHz. This was confirmed with an interferometer by Bower et al (2002b)
and they also found evidence for a large rotation measure � 106 rad m−2 plus
some evidence for intrinsic depolarization towards lower frequencies. This may
be the first direct evidence for a hot accretion flow around Sgr A*. At the moment
of writing this is a strongly developing field which promises many new insights
in the future. For example, one can use the measured RM to limit the accreting
material engulfing Sgr A* (Agol 2000) (see also p 335).

As a big surprise, Bower et al (1999b) also found strong circular polarization
at the 0.3–1% level. This is unusual because typical AGN polarization is more
linear than circular and it can be used to constrain the electron content and
distribution in Sgr A* (see section 11.3.4). Interestingly, the circular polarization
itself turned out to be variable. At higher frequencies the variability as well as the
fractional polarization increases (Bower et al 2002a). Figure 11.8 summarizes the
currently known polarization properties of the Sgr A* spectrum.

11.3 Radio and X-ray emission from a black hole jet

A very common feature of active black holes in the radio regime is the compact
radio core with its characteristic, flat spectrum. In luminous quasars the cores
have been known for many years. Studying these radio cores with VLBI has
allowed us to make the most detailed images of the physics and environment of
black holes (Zensus 1997). Such flat-spectrum radio cores have also been found in
many nearby galaxies which show signs of nuclear activity (Wrobel and Heeschen
1984, Nagar et al 2000, Falcke et al 2000). A well studied example is M81*, the
compact core in the nearby galaxy M81, which shares many characteristics with
Sgr A* (Reuter and Lesch 1996, Bietenholz et al 2000, Brunthaler et al 2001).
In essentially all cases these cores are related to relativistic outflows or jets. For
this reason, we start with the simplest assumption, namely that Sgr A* is not
very different from these, and we will discuss in the following how to obtain the
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Figure 11.8. The average fractional circular polarization of Sgr A* and upper limits to the
linear polarization from Bower et al (2002; and references therein). In the top right-hand
corner we show the linear polarization values given in Aitken et al (2000) from single-dish
values. The error bars are 1σ errors.

observed radio spectra within the context of jet physics.

11.3.1 The flat radio spectrum

The fact that flat radio spectra for radio cores are so ubiquitous suggests that this is
a very robust feature that must arise naturally. This is indeed the case for initially
collimated, then freely expanding, supersonic radio plasmas. Why is this so?

Let us consider a plasma jet ejected from the vicinity of a black hole.
Mechanisms for this collimated launching of jets have been discussed in the
literature (see, e.g., Ferrari 1998 and references therein) and are mostly magneto-
hydrodynamic (MHD) in origin. Observationally, jets span an enormous range
of spatial scales—from milliparsecs to megaparsecs—and maintain their basic
structure for long stretches (see, e.g., Bridle and Perley 1984, figure 2). Here, we
consider the part where the jet has left the acceleration and collimation region and
is essentially in a free expansion. If the jet has not yet propagated and expanded
too far, it is usually a good assumption to assume that the jet is highly over-
pressured with respect to the external medium. We use a cylindrical coordinate
system where z is along the jet axis and r is perpendicular to it.
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Let us assume the jet plasma moves in the forward direction with a
relativistic and almost constant proper velocity (bulk speed)

vz = γjβjc (11.9)

along the jet axis. The sideways expansion will happen with the respective sound
velocity

vs = γsβsc (11.10)

if we can ignore the external pressure and we are well beyond the sonic point
where we can neglect adiabatic losses.

Here we use the well-known definition of the relativistic Lorentz factor and
the dimensionless velocity,

γ =
√

1

1− β2 and β = v
c
. (11.11)

With longitudinal and lateral expansion having constant velocity the plasma
will expand into a cone with a half opening angle

φ � 1

�
� = γjβj

γsβs
(11.12)

where� is the relativistic Mach number (see Königl 1980). The shape is given
by

r = z

�
. (11.13)

This naturally resulting conical structure is the basis for the self-similar structure
of jets.

The scaling of the relevant parameters for calculating the synchrotron
emission, electron density ne, and magnetic field B can be obtained from simple
conservation laws. First, we demand that the particle number Ne is conserved
along the flow and set the total mass flux to

Ṁj = d(mp Ne)

dt
= ρvz A = constant. (11.14)

Note that the total mass flux is determined by the protons in the fully ionized
plasma and we assume charge balance between electrons and protons (Ne = Np);
ρ is the mass density and A = πr2 the cross section of the jet. The particle
density ne is then given by

ne(r) = Ṁj

mp × γjβjc × πr2 ∝ r−2. (11.15)

We can use the same argument to get the scaling for the magnetic field,
by demanding that the comoving magnetic field energy in a turbulent plasma is
conserved:

ĖB = LB = ρBvz A = constant. (11.16)
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Here we use LB as a measure for the magnetic power fed into the jet. The energy
density of the magnetic field is given by

ρB = B2
j /8π (11.17)

and consequently we get

Bj(r) =
√

8LB

γjβjc × r2
= 36 G (γjβj)

−1/2
(

LB

1000L�

)1/2( r

Rs

)−1

∝ r−1

(11.18)
where for the Galactic Center we have a Schwarzschild radius of

RS = 2GM•
c2 = 0.9× 1012 cm

(
M•

3× 106M�
)
. (11.19)

Of course, this implies that the energy content in a magnetic field and
relativistic particles retains a fixed ratio throughout the jet. One therefore relates
these two crucial parameters of a jet by an ‘equipartition relation’ such that the
total energy in the particles is a fraction k of the total energy in the magnetic field.
For simplicity we assume that all electrons are of the same energy Ee = γemec2,
with γe being the electron Lorentz factor characterizing the internal energy or
temperature of the electrons (not to be confused with the bulk Lorentz factor of
the entire flow)3. We can equate the energy densities,

neγemec2 = k
B2

8π
and yield ne = k B2

8πγemec2
. (11.20)

Here we only consider the internal energy of the jet. The total energy of the
jet will of course be still dominated by the kinetic energy of the protons—but not
by a huge factor. A proper discussion of the total energy budget requires solution
of the relativistic Bernoulli equation and is discussed in Falcke and Biermann
(1995).

To calculate the radio emission, we need to know the scaling of the
synchrotron emission and absorption coefficients. This can be obtained, e.g. from
Pacholczyk (1970; equations (3.43) and (3.44)) for electrons with a pitch angle αe
with respect to the magnetic field. The emission and absorption coefficients are,
respectively,

εν = ne

√
3e3

4πmec2
B sin αe F

(
ν

νc

)
(11.21)

and

αν = nec2

√
3e

4πm3
ec5

√
3e3

4πmec2
(B sin αe)

3/2ν
−5/2
c K5/3

(
ν

νc

)
(11.22)

3 The results will not be very different for a thermal distribution of electrons or a power-law
distribution with a low-energy cut-off around γe.
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with

νc = 3γ 2
e e

4πmec
B sin αe. (11.23)

F(x) is a function with asymptotic limit

F(x) ∼ 4π√
3�(1/3)

( x

2

)1/3
for x � 1

which has a maximum at
νmax = 0.29νc. (11.24)

K5/3(x) is the Bessel K function which can be Taylor expanded into K5/3(x) =
1.43x−5/3 for x � 1. For the pitch angle we can take an average value:

〈αe〉 = arcsin

(∫ π/2
0 sin α sin α dα∫ π/2

0 sin α dα

)
� 52◦. (11.25)

Using the asymptotic behavior and average pitch angle, we can evaluate the
emission and absorption coefficients and obtain handy approximate formulae:

εν = 6.0× 10−20 erg s−1 Hz−1 cm−3k

(
B

Gauss

)8/3 ( γe

100

)−5/3 ( ν

GHz

)1/3

(11.26)
and

αν = 3.5× 10−14 cm−1k

(
B

Gauss

)8/3 ( γe

100

)−8/3 ( ν

GHz

)−5/3
. (11.27)

The synchrotron spectrum of a mono-energetic electron distribution will
have a characteristic shape consisting of three parts:

(1) an optically thick spectrum with Sν ∝ ν2 at frequencies ν � νssa below the
self-absorption frequency,

(2) an optically thin spectrum with Sν ∝ ν1/3 at intermediate frequencies
νssa < ν < νc, and

(3) an exponential high-frequency cut-off beyond ν � νc.

In most realistic cases for jets the intermediate region will not assume the ν1/3

law, since νc and νssa are close together leading to a curved spectrum.
The self-absorption frequency can be calculated from equations (11.27) and

(11.18), by requiring that the optical depth through the jet, seen under an angle of
θ ��−1 from the jet axis, is unity:

τ arcsin θ Rαν = 1. (11.28)
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We find

νssa = 2.3 GHz k3/5 sin−3/5 θ(γjβj)
−4/5

( γe

100

)−8/5
(

LB

1000L�

)4/5 ( R

AU

)−1

.

(11.29)
The maximum flux of synchrotron emission is found at a frequency of

νmax = 0.29νc (equation (11.24); see also Rybicki and Lightman 1979,
figure 6.6). Using equations (11.23) and (11.18) we find

νmax = 21 GHz(γjβj)
−1/2

( γe

100

)2
(

LB

1000L�

)1/2( R

AU

)−1

. (11.30)

As one can see, as hinted at earlier, both frequencies are within an order of
magnitude for near-equipartition situations and both scale with R−1 = (Z/�)−1

(equation (11.13)).
Since the synchrotron spectrum peaks near these frequencies one also sees

that for a given observing frequency the maximum of the emission in the spatial
domain will be at one characteristic zone in the jet. A different observing
frequency will reveal a different maximum. This effect produces a core shift that
is well known in quasar jets. Since the size of the emitting region, �R � Z/�,
will be proportional to the distance one also expects a different core size for
different frequencies:

Zmax = 21 AU�(γjβj)
−1/2

( γe

100

)2
(

LB

1000L�

)1/2 ( ν

GHz

)−1
. (11.31)

The effect of a roughly ν−1 core size was nicely demonstrated by Bietenholz
et al (2000) for M81*. For Sgr A* this effect is not visible at cm waves due to the
frequency dependence of the scatter broadening.

At the Galactic Center distance of D = 8 kpc, 1 AU corresponds to 0.125
mas. For comparison, the claimed size for Sgr A* at 43 GHz by Lo et al
(1998) was �0.7 mas. Equation (11.31) predicts a shift of order 0.25 mas ×
(�/4)(LB/1000L�) at 43 GHz.

Another useful comparison is the maximum frequency of the entire
spectrum. For the smallest size of the system, one Schwarzschild radius RS =
0.9 × 1012 cm = 0.06 AU, we find a maximum frequency of ∼350 GHz
from equation (11.30). Hence it is immediately understandable why the Sgr A*
spectrum has to turn over at higher frequencies, beyond the sub-mm bump. In this
respect the location of the sub-mm bump is a rough indicator of the size of the
black hole in the Galactic Center.

Finally, we can calculate the total spectrum. We know that each frequency is
dominated by a relatively small spatial region Z(ν) in the jet at the scale given by
equation (11.31). The volume of this region can be approximated by a cylinder,
V = πR2 Z , where R is given by equation (11.13). This volume has to be
multiplied by the emission coefficient (equation (11.26)) with the magnetic field
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(equation (11.18)) inserted. Divided by the surface of an imaginary absorbing
sphere at the observer distance D, we get the flux density of the jet as a function
of frequency:

Sν = εν(νc)
πR2 Z

4πD2

= 1.0 Jy k
�

4

( γe

100

)−1
(βjγj)

−3/2
(

LB

1000L�

)3/2

. (11.32)

As we can see, the frequency cancels out thus implying a perfectly flat
spectrum (Sν ∝ ν0). This is a fairly general result that applies to essentially
all flat-spectrum radio cores in black hole jets. A schematic view of how the flat
spectrum arises is also shown in figure 11.9.

The equations have all been normalized by a magnetic luminosity of LB �
1000 L�. Of course, the jet also has other energetic components (e.g. turbulence
or cold protons); however, for a maximally efficient jet they will be of similar
order of magnitude (Falcke and Biermann 1995).

The total energy content of the jet will therefore be a few times higher, i.e.
of order 1037 erg s−1. Assuming the efficiency for jet production to be of order
0.1Ṁc2 (e.g. Falcke et al 1995) this would require an accretion rate of at least
�2× 10−9 M� yr−1 onto Sgr A*. This is quite in the range of—and sometimes
well below—the accretion rates discussed for Sgr A*.

In our derivation we have so far completely ignored relativistic effects on the
emitted spectrum. For a continuous relativistic jet where βj � 1 and γj � 1,
relativistic beaming will lead to a modification of the observed spectrum (Lind
and Blandford 1985):

S′ν = �2Sν and ν′ = �ν (11.33)

where one defines the relativistic Doppler factor as

� = 1

γj(1− βj cos θ)
. (11.34)

For moderate inclination angles and moderate jet velocities the effect will be
of order unity and we have neglected this for the sake of clarity. From this simple
exercise we can conclude that the basic properties of Sgr A*, spectrum, flux, and
size, can be naturally reproduced by a jet model.

For a more realistic model, one has to take several additional effects into
account. For example, we have here assumed a constant velocity for the jet. This
is somewhat inconsistent, since the jet as presented here has a pressure gradient
that will naturally lead to some mild acceleration of the jet plasma along the jet
axis. This effect together with the relativistic corrections will lead to a slightly
inverted radio spectrum and a slightly smaller exponent for the size–frequency
relation (Falcke 1996a).
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Figure 11.9. This is a schematic diagram of the jet model. The accretion disk/flow is
assumed to be radiatively unimportant. The sub-mm bump and the X-ray emission are
produced by the jet nozzle region. The flat part of the radio spectrum is the sum of
individual, peaked synchrotron spectra from increasingly distant zones in the jet. The
peak frequency of each of these spectra shifts to lower frequencies as one moves outwards,
while the peak flux density stays essentially at the same level or decreases only slowly.
Figure from S Markoff, based on Falcke and Markoff (2000). See also color section.
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In addition we have not yet dealt with the sub-mm bump in the spectrum.
From equations (11.30) and (11.31) it is clear that this emission has to come from
the innermost region of the jet (the ‘nozzle’; Falcke 1996b) or the inner edge of
the accretion flow (Melia et al 2000, Narayan et al 1998). A simple descriptive
calculation to estimate the parameters of this region, which essentially follows the
procedure outlined here, is given in Melia and Falcke (2001, section 5.2).

All these effects including the X-ray spectrum are dealt with in more
sophisticated numerical calculations discussed in the next sections.

11.3.2 The X-ray spectrum

After calculating the radio spectrum, we can now make a rough estimate of
the expected X-ray spectrum from Sgr A*. For AGN, there are typically four
processes discussed to explain the observed X-ray emission in various objects:

(1) synchrotron emission,
(2) Bremsstrahlung,
(3) thermal Comptonization by a hot corona, and
(4) inverse Compton scattering of photons off the relativistic electrons in the jet

plasma.

Possibility (1) can be excluded here since the radio synchrotron spectrum
cuts off already in the mid-infrared; (2) and (3) have been discussed in chapter 10.
Thus, we will here concentrate on the fourth possibility.

Since the only photons we see from Sgr A* outside the X-ray regime are
radio photons, here we will consider solely the synchrotron self-Compton (SSC)
process, which is absolutely unavoidable. The relativistic electrons that produce
synchrotron radiation also have a finite probability to Compton up-scatter the
very photons they have produced in the first place. The frequency of the up-
scattered photons will be increased by a factor � γ 2 with respect to the target
photons. Inverse Compton is a scattering process where the probability of an
interaction of an electron from a population with particle density ne with a photon
of a population with photon density nγ depends on ne × nγ . Since in SSC the
electrons are also responsible for the target photons, the efficiency of SSC will
go as n2

e . For the case of a jet, where the density increases inwards with R−2,
while the volume decreases inwards with R3, the dominant contribution to the
up-scattered spectrum will be at the smallest scale in the system, where ne is
maximal. Following the previous discussion, this will be at a few Schwarzschild
radii where the sub-mm bump in the spectrum is produced.

One can show (Rybicki and Lightman 1979, section 7.2) that the luminosity
LSSC of the inverse-Compton process is proportional to the luminosity of the
synchrotron emission Lsync, with the proportionality factor given by the ratio of
the energy densities of synchrotron photons:

Uph = Lsync

4πR2c
(11.35)
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and magnetic field
UB = B2/8π (11.36)

such that

LSSC = Uph

UB
Lsync. (11.37)

From figure 11.7 we find that the maximum of emission in Sgr A* is about
3 Jy at 1012 Hz. Hence the synchrotron luminosity of Sgr A* is

Lsync = 2.3× 1035 erg

s

(
Sν

3 Jy

)(
D

8 kpc

)2 ( νmax

1012 Hz

)
(11.38)

and from equations (11.18) and (11.37) we get, independent of the radius,

LSSC = 3.4× 1033 erg

s
(βjγj)

(
Sν

3 Jy

)2 ( D

8 kpc

)4 ( νmax

1012 Hz

)2
(

LB

1000L�

)−1

.

(11.39)
As can be seen the SSC emission is sensitive to the ratio between synchrotron

emission and magnetic field. If a different parametrization is used we have a
dependence on the equipartition factor k. In general one can also state that the
SSC emission should be more variable than the synchrotron emission since it
depends with a high power on flux density and peak synchrotron frequency.

The peak of the SSC emission itself will roughly occur at γ 2 × νmax. For
γe � 100 and νmax � 1012 Hz, the peak will be above 1016 eV, hence in the far
ultraviolet and soft X-rays.

All of this is quite consistent with the X-ray observations by Baganoff et al
(2001) who find a quiescent, soft X-ray emission of a few times 1033 erg s−1 in
Sgr A* which can vary rapidly at times.

A schematic view of how the spectrum of Sgr A* from radio to X-rays can
be composed from the various parts discussed here is shown in figure 11.9.

11.3.3 Numerical results

Now we have verified that the basic properties of Sgr A* can be explained with
a synchrotron+SSC jet model, we can consider a more sophisticated numerical
approach. This has been outlined in Falcke and Markoff (2000), Markoff et al
(2001), and Yuan et al (2002).

We start with the basic jet emission model (Falcke and Biermann 1999,
Falcke and Markoff 2000), consisting of a conical jet with pressure gradient,
nozzle and relativistic effects. The parameters in the nozzle for the quiescent
state are determined from the underlying accretion disk, assumed to be an ADAF,
as described in Yuan et al (2002). All quantities further out in the jet are solved by
using conservation of mass and energy, and the Euler equation for the accelerating
velocity field. The results are shown in figures 11.10 and 11.11 and show that the
model is able to reproduce the observed spectrum and size in detail.
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Figure 11.10. The jet–disk spectral model for Sgr A*. The dotted line is for the ADAF
(optically thin, advection dominated accretion flow) contribution, the dashed line is for
the jet emission, and the full line shows their sum. For the most part, the emission is
dominated by the jet spectrum. The sub-mm bump is produced by the jet nozzle with a
possible contribution from the accretion flow. The X-ray emission is largely SSC emission
from the nozzle with a slight contribution from the more extended thermal X-ray emission
from the accretion flow. We have here assumed an accretion rate of 10−6 M� yr−1, where
only 0.1% of the power goes into the jet. For a 10% efficiency the required accretion
rate is about 10−8 M� yr−1 and the disk contribution would be negligible. The model is
discussed in more detail in Yuan et al (2002).

11.3.4 The circular polarization

Finally, to understand the radio properties we also have to consider the
surprising results of the polarization observations, where a relatively large circular
polarization (CP) was found. The following intuitive explanation is essentially
a discussion of CP based on the paper by Beckert and Falcke (2002), where
more details can be found. The main point is that linear polarization is naturally
obtained in synchrotron radiation (up to 70% for homogeneous magnetic fields),
while CP is strongly suppressed in synchrotron plasmas with γe � 1. The reason
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Figure 11.11. Projected size of the major and minor axes of the jet in Sgr A* as a function
of frequency. The filled dots mark the size as measured by Lo et al (1998; 43 GHz)
and Krichbaum et al (1998; 86 and 215 GHz). The lines represent the predictions of the
jet model. At frequencies above 30 GHz one obtains a two-component structure with an
increasingly stronger core (nozzle, full dashed line) and a fainter jet component (dotted
line).

for this is that the narrow beaming cone of the relativistic electrons allows one
to see only a small arc along the gyration around the magnetic field. However,
CP can be obtained through radiation transfer, particularly through the fact that a
magnetic plasma will be naturally birefringent.

For simplicity let us now separate Faraday rotation from conversion and
picture only purely linearly or circularly polarized waves in a homogeneous
magnetic field.

The two orthogonal normal modes for propagation perpendicular to the
magnetic field are linearly polarized and a purely circularly polarized wave is split
into the two normal modes with a relative phase-shift as shown in figure 11.12
(left). Without a phase-shift the wave will be purely linearly polarized. If, for
example, a locally homogeneous magnetic field vertically pervades the box in
figure 11.12 (left) along the z-direction, electrons or positrons will be free to move
along the field lines and resonate with the vertical mode but hardly resonate with
the horizontal mode along the x-direction. This yields the birefringence discussed
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Figure 11.12. Left: A circularly polarized wave can be composed of two orthogonal
linearly polarized modes shifted in phase. A phase shift would be produced by a plasma
in a magnetic field perpendicular to the propagation direction of the waves (here along
the z-direction). Without a phase-shift the sum of the two modes would be a purely
linearly polarized wave. A video showing the effect of how phase-shifts in a region will
turn such a linearly polarized wave into a circularly polarized wave (conversion) can be
found on http://bookmarkphysics.iop.org/bookpge.htm?&book=1153p. Right: A linearly
polarized wave can be composed of two orthogonal circularly polarized modes shifted
in phase. A phase shift would be produced by a plasma in a magnetic field along the
propagation direction of the waves (here along the y-direction). A video showing the
effect of additional phase-shifts on the linear polarization, leading to Faraday rotation, can
be found at http://bookmarkphysics.iop.org/bookpge.htm?&book=1153p.

earlier. The resonating electrons or positrons will themselves act as antennas and
emit a somewhat delayed wave that interferes with the incoming vertical mode,
leading to a slight phase-shift between vertical and horizontal modes. The effect
of this shift is shown in the animation4, where the resulting wave is circularly
polarized and switches from linear to circular polarization as a function of the
shift.

Conversion also acts on initially only linearly polarized radiation. The extent
of this conversion will depend on the misalignment between the incoming wave
and the magnetic field direction since, obviously, a phase-shift between two
orthogonal modes will have little effect if one mode is very small or non-existent.
Moreover, a random distribution of magnetic field lines on the plane of the sky
will reduce circular polarization from conversion in exactly the same way as linear
polarization would be reduced.

Analogous to the picture for conversion, one can view a linearly polarized

4 http://bookmarkphysics.iop.org/bookpge.htm?&book=1153p
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wave as composed of two circularly polarized normal modes when propagating
along the magnetic field. This is sketched in figure 11.12 (right), where we
will assume a longitudinal magnetic field, i.e. a field along the y-direction. The
circular modes will resonate with either electrons or positrons gyrating around the
magnetic fields. The latter will again emit a circularly polarized wave, producing
a phase-shift when interfering with the incoming wave. The effect of the phase-
shift in the circular modes is shown in an animation of figure 11.12 (right), where
one can see that the resulting linearly polarized wave is simply (Faraday) rotated
(see http://bookmarkphysics.iop.org/bookpge.htm?&book=1153p).

An important conclusion to remember, therefore, is that conversion is
mainly produced by magnetic field components perpendicular to the line-of-
sight or photon direction, while Faraday rotation is produced by magnetic field
components along the line-of-sight. Moreover, one can also see that conversion
is insensitive to the electron/positron ratio while Faraday rotation is not. In
figure 11.12 (left) an electron and an positron are both free to move along the
z-axis. While they will respond in opposite directions to the incoming wave,
their respective emitted waves will also have opposite signs because of opposite
charges and hence be identical. In the case of Faraday rotation, the incoming
left- or right-handed circularly polarized wave will only resonate with the particle
that also has the correct handedness in its gyration—either electron or positron
depending on the magnetic field polarity. A pure pair plasma would therefore
produce exactly the same phase-shift in left- and right-handed modes and not
produce any net Faraday rotation. In the case of excess charge, the direction of
Faraday rotation depends on the sign of the excess charge (presumably electrons)
and the polarity of the magnetic field. This will indirectly also affect the sign
of the circular polarization, if Faraday rotation is the ultimate cause of the
misalignment between the plane of polarization and the magnetic field direction.

One can include these effects on the polarization into a radiation transfer
code and try to reproduce the Sgr A* spectrum and polarization with a jet/outflow
model (Beckert and Falcke 2002). The results are shown in figure 11.13 and
nicely reproduce the observed spectrum. Two major conclusions can be drawn
from this approach:

(i) Since conversion is most effective for low-energy electrons one can conclude
that a larger number of these low-energy electrons (1 < γe � 100)
are present in Sgr A*. In fact, in the specific modeling mentioned here,
one finds that up to a factor of 100 more low-energy electrons could be
present than the ‘hot’ electrons with γe � 100 invoked earlier to explain
the spectrum. Hence, a large fraction of Sgr A*’s plasma could reside in a
rather inconspicuous, ‘cold’ and non-radiating (hidden) plasma.

(ii) Since the conversion requires an asymmetric magnetic field polarity, an
outflow model with a helical magnetic field is strongly favored. The stability
of the sign of the CP also suggests that the polarity (the North pole of the
black hole/jet) has remained stable over some 20 years—a long timescale
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Figure 11.13. Outflow model for the radio spectrum of Sgr A* with polarization. The
result of model calculations for total flux I (full line), linearly polarized P (dense shaded
area), and circularly polarized flux V (sparsely shaded area) are shown for a distance of
8 kpc. Diamonds show the observed circular polarization and circles the observed linear
polarization; the rest are observed total flux density values. The numerical calculations are
based on the model described in Beckert and Falcke (2002). The shaded areas mark the
expected variability due to turbulence. The global magnetic field structure is a spiral with
Bφ/Bz = 1.

compared to the accretion time in optically thin accretion flows. It is possible
that this stable polarity reflects the stable polarity of the Galactic magnetic
field pervading the central parsec of the Galaxy which is accreted onto the
black hole.

The main uncertainty in the modeling of the polarization at present reflects
the uncertainty in what suppresses the linear polarization in Sgr A*. Here, we
have simply assumed that the de-polarization of the linear polarization is due to
intrinsic Faraday de-polarization in the radio source itself. However, this could
similarly be done in a ‘foreground’ screen, which would most likely be associated
with the accretion flow. If that is the case, some of the ‘hidden matter’ mentioned
earlier would be in the actual accretion flow and not in the outflow/jet. This can
be used to constrain the accretion rate. Estimates by Agol (2000) and Quataert
and Gruzinov (2000) then yield a limit on the accretion flow of Ṁ � 10−8 to
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10−9 M� yr−1, given the rotation measures inferred from the linear polarization
observations at a λ of 1 mm.

11.3.5 Comparison with other supermassive black holes

An important input factor to the model discussed so far is the power of the jet
(here we mainly considered the magnetic power LB). A nice feature of the model
is that it can be scaled over many orders of magnitude by just changing the power
input of the jet. This is presumably done by a parallel change in the accretion
disk power. Doing so would change the power of the radio core but would not
change its spectral shape—only the turnover frequency might change. To a radio
observer the jet would always appear as a flat-spectrum core. This may be the
reason why radio jets are expected for almost every type of active black hole:
from supermassive to stellar, from powerful to faint.

Indeed, compact, flat-spectrum radio cores have been found in sources like
quasars, Seyfert galaxies, low-luminosity AGNs and LINERs, as well as in X-
ray binaries, confirming that the physics we have discussed for Sgr A* is fairly
universal. The exact nature of the cores and the emission of these other engines is
not the main focus of the book and further discussion of this point can be found in
Falcke (2001). However, the general point one can make is that as the accretion
power and the disk luminosity decreases, one expects to see fainter radio cores.
If there is a range in accretion rates throughout the universe, we also expect a
range of core luminosities. This is demonstrated in figure 11.14, where Sgr A*-
like radio cores of various different types are shown for a range of luminosities.
In such a plot, Sgr A* would come in at the bottom left of the distribution for
an accretion rate of �10−8 M� yr−1 (as indicated by the upper black dot with a
horizontal error bar; the other point indicates the estimated position for M31*—
the core in the Andromeda galaxy). However, since the accretion disk in Sgr A* is
so faint and the accretion rate so uncertain, we cannot actually derive an accretion
disk luminosity or accretion power and this should only be considered as a general
guideline. The bottom line is, however, that Sgr A* with its radio properties is
not alone in the universe but is at the bottom end of the activity scale seen from
supermassive black holes.

11.4 Imaging the event horizon—an outlook

One can easily see from the previous sections that the ever growing interest in
Sgr A* has already yielded a number of tantalizing results, the most important
being that Sgr A* is the best supermassive black hole candidate we know. VLBI
observations are already approaching scales which are not far from the actual
scale of the black hole and the presence of the sub-mm bump indicates that even
more compact emission is present at yet smaller scales—possibly as close in as the
event horizon of the black hole. It is therefore worth exploring whether we have,
in principle, a chance to actually approach this scale with imaging techniques
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Figure 11.14. Correlation between thermal from the accretion disk (with the exception
of X-ray binaries this is basically normalized to the narrow Hα emission) and the
monochromatic luminosity of black hole radio cores: open circles, radio-loud quasars;
small open circles, FR I radio galaxies; open gray circles, blazars and radio-intermediate
quasars (dark grey); black dots, radio-quiet quasars and Seyferts; small dots, X-ray
binaries; small boxes, detected sources from the ‘48 LINERs’ sample (Nagar et al 2000).
The latter apparently confirm the basic prediction of Falcke and Biermann (1996) and
almost close the gap between very low (on an absolute scale) accretion rate objects and
high accretion rate objects. The shaded bands represent the radio-loud and radio-quiet jet
models as a function of accretion as shown in Falcke and Biermann (1996).

and to ask what we would expect to see. This naturally will have to be done at
the highest radio frequencies where the resolution is the highest and the scatter-
broadening of Sgr A* is the lowest.

At sub-mm wavelengths, the various models indeed predict that the
synchrotron emission of Sgr A* is not self-absorbed, allowing a view into the
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region near the event horizon. The size of this event horizon is 1
2 (1+

√
1− a2∗)RS,

where RS ≡ 2GM/c2, M is the mass of the black hole, G is Newton’s constant,
c the speed of light, a∗ ≡ Jc/(GM2) is the dimensionless spin of the black hole
in the range 0–1, and J is the angular momentum of the black hole.

The appearance of the emitting region around a black hole was determined
by Falcke et al (2000)—from which we take the following discussion—under the
condition that it is optically thin. For Sgr A* this might be the case for the sub-
mm bump (Falcke et al 1998) indicated by the turnover in the spectrum, and can
always be achieved by going to a suitably high frequency. For the qualitative
discussion the emissivity was assumed to be frequency independent and to be
either spatially uniform or to scale as r−2. These two cases cover a large range
of conditions expected under several reasonable scenarios, be it a quasi-spherical
infall, a rotating thick disk, or the base of an outflow. The calculations took into
account all the well-known relativistic effects, e.g. frame dragging, gravitational
redshift, light bending, and Doppler boosting.

For a planar emitting source behind a black hole, a closed curve on the sky
plane divides a region where geodesics intersect the horizon from a region whose
geodesics miss the horizon (Bardeen 1973)5. This curve, which is referred to as
the ‘apparent boundary’ of the black hole, is a circle of radius 1

2

√
27RS in the

Schwarzschild case (a∗ = 0), but has a more flattened shape of similar size for
a Kerr black hole, slightly dependent on inclination. The size of the apparent
boundary is much larger than the event horizon due to strong bending of light by
the black hole. When the emission occurs in an optically thin region surrounding
the black hole, the case of interest here, the apparent boundary has the same exact
shape since the properties of the geodesics are independent of where the sources
are located. However, photons on geodesics located within the apparent boundary
that can still escape to the observer experience strong gravitational redshift and a
shorter total path length, leading to a smaller integrated emissivity, while photons
just outside the apparent boundary can orbit the black hole near the circular
photon radius several times, adding to the observed intensity (Jaroszynski and
Kurpiewski 1997). This produces a marked deficit of the observed intensity inside
the apparent boundary—the ‘shadow’ of the black hole.

We here consider a compact, optically thin emitting region surrounding a
black hole with spin parameter a∗ = 0 (i.e. a Schwarzschild black hole) and a
maximally spinning Kerr hole with a∗ = 0.998. In the set of simulations shown in
figure 11.15, the viewing angle i was taken to be 45◦ with respect to the spin axis
(when it is present) with two distributions of the gas velocity v. The first has the
plasma in free fall, i.e. vr = −√2r(a2 + r2)�/A and � = 2ar/A, where vr is
the Boyer–Lindquist radial velocity,� is the orbital frequency,� ≡ r2−2r+a2,
and A ≡ (r2 + a2)2 − a2� sin2 θ . (We have set G = M = c = 1 in this
paragraph.) The second has the plasma orbiting in rigidly rotating shells with
the equatorial Keplerian frequency � = 1/(r3/2 + a) for r > rms (marginally

5 For the following discussion see also chapter 5.
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Figure 11.15. An image of an optically thin emission region surrounding a black hole with
the characteristics of Sgr A* at the Galactic Center. The black hole is here either maximally
rotating (a∗ = 0.998, panels (a)–(c)) or non-rotating (a∗ = 0, panels (d)–(f )). The emitting
gas is assumed to be in free fall with an emissivity ∝ r−2 (top) or on Keplerian shells
(bottom) with a uniform emissivity (viewing angle i = 45◦). Panels (a) and (d) show the
GR ray-tracing calculations, panels (b) and (e) are the images seen by an idealized VLBI
array at 0.6 mm wavelength taking interstellar scattering into account, and panels (c) and
(f ) are those for a wavelength of 1.3 mm. The intensity variations along the x-axis (full
green curve) and the y-axis (dashed purple/blue curve) are overlaid. The vertical axes
show the intensity of the curves in arbitrary units and the horizontal axes show the distance
from the black hole in units of G M•/c2 (1/2RS). See also color section and video at
http://bookmarkphysics.iop.org/bookpge.htm?&book=1153p.

stable radius) with vr = 0, and infalling with constant angular momentum inside
r < rms (Cunningham 1975), with vθ = 0 for all r .

In order to display concrete examples of how realistic the proposed
measurements of these effects with VLBI will be, the expected images were
simulated for the massive black hole candidate Sgr A* at the Galactic Center.

The results of the two different models with and without scattering at two
different observing wavelengths are shown in figure 11.15. The two distinct
features that are evident in the top panel for a rotating black hole are: (1) the
clear depression in Iν—the shadow—produced near the black hole, which in this
particular example represents a modulation of up to 90% in intensity from peak
to trough; and (2) the size of the shadow, which here is 4.6 RS in diameter. This
represents a projected size of 34 µarcseconds. Such a resolution has already been
surpassed in some λ2 mm-VLBI experiments of other radio cores (Krichbaum et
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al 2002). The shadow is a generic feature of various other models one can look
at, including those with outflows, cylindrical emissivity, and various inclinations
or spins.

This black hole shadow is also visible in the second illustrated case for a
non-rotating black hole with a modulation in Iν in the range of 50–75% from
peak to trough, and with a diameter of roughly 5.2 RS. In this case, the emission
is asymmetric due to the strong Doppler shifts associated with the emission by a
rapidly moving plasma along the line-of-sight (with velocity vφ).

The important conclusion is that the diameter of the shadow—in marked
contrast to the event horizon—is fairly independent of the black hole spin and is
always of order 5 RS. The presence of a rotating hole viewed edge-on will lead
to a shifting of the apparent boundary (by as much as 1.25 RS, or 9 µarcseconds)
with respect to the center of mass, or the centroid of the outer emission region.
Another possible signature of general relativistic effects may come from the
polarization properties of the sub-mm-wave emission region. This has been
calculated by Bromley et al (2001).

The importance of the proposed imaging of Sgr A* at sub-mm wavelengths
with VLBI cannot be overemphasized. The sub-mm bump in the spectrum of
Sgr A* strongly suggests the presence of a compact component whose proximity
to the event horizon is predicted to result in a shadow of measurable dimensions
in the intensity map. Such a feature seems unique and Sgr A* seems to have all
the right parameters to make it observable. The observation of this shadow would
confirm the widely held belief that most of the dark mass concentration in the
nuclei of galaxies such as ours is contained within a black hole, and it would be
the first direct evidence for the existence of an event horizon largely independent
of any modeling. It would finally turn the theoretical concept of an event horizon
discussed at the beginning of the book into an observable reality.

A non-detection with sufficiently developed techniques, however, might
pose a major problem for the standard black hole paradigm. Because of
this fundamental importance, the experiment proposed here should be a major
motivation for intensifying the current development of sub-mm astronomy in
general and mm and sub-mm VLBI in particular.

This result also shows the outstanding position Sgr A* has among known
radio cores and supermassive black hole candidates. For other supermassive black
holes, with the exception perhaps of the very massive black hole in M87, the
shadow will be much smaller than in Sgr A* because of the much larger distances.
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Germany
Email: eckart@ph1.uni-koeln.de

343



344 List of authors

Prof Heino Falcke
Max-Planck-Institut für Radioastronomie
Auf dem Hügel 69
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Appendix B

Units and constants

In table B.1 we list a few constants and units that are commonly used in
astrophysics and astronomy. Since astronomers often still use cgs units while
physicists use SI units, we use both systems here.

In table B.2 we list a few typical astronomical observing bands with
corresponding frequency ν, wavelength λ, and energy range E . The boundaries
between the various bands are not very stringent.

Astrophysical literature quoted here can be easily found through the NASA
Astrophysical Data System (ADS) at http://adswww.harvard.edu. Preprints can
be found at http://arxiv.org.
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Table B.1. Astrophysical and physical constants and units.

Speed of light: c = 2.998× 108 m s−1 = 2.998× 1010 cm s−1

Planck’s constant: h = 6.626× 10−34 J s = 6.626× 10−27 cm2 g s−1

Gravitational constant: G = 6.67× 10−11 m3 s−2 kg−1 = 6.67× 10−8 cm3 g−1 s−2

Boltzmann’s constant: kB = 1.38× 10−23 J K−1 = 1.38× 10−16 cm2 g s−2 K−1

Electron mass: me = 9.11× 10−31 kg = 9.11× 10−28 g
Proton mass: mp = 1.67× 10−27 kg = 1.67× 10−24 g
Electron charge: e = 1.60× 10−19 A s = 4.80× 10−10 cm3/2 g1/2 s−1

Stefan–Boltzmann constant: σ = 5.67× 10−8 W m−2 K−4 = 5.67× 10−5 g s−3 K−4

Thomson cross section: σth = 6.65× 1029 m2 = 6.65× 10−25 cm2

Solar mass: M� = 1.99× 1030 kg = 1.99× 1033 g
Solar radius: R� = 0.696× 106 km = 6.96× 1010 cm
Solar luminosity: L� = 3.85× 1026 W = 3.85× 1033 erg s−1

Jansky (energy flux density): 1 Jy = 10−26 W s−1 cm−2 Hz−1 = 10−23 erg s−1 cm−2 Hz−1

Energy: 1 J (= joule) 107 erg
Magnetic field B: 1 T (= tesla) 104 G (= gauss)

astronomical unit: 1 AU = 150× 106 km = 1.50× 1013 cm
lightyear: 1 ly = 0.946× 1013 km = 0.946× 1018 cm
parsec: 1 pc = 3.09× 1013 km = 3.09× 1018 cm
kiloparsec: 1 kpc = 3.09× 1016 km = 3.09× 1021 m

arcdegree: 1◦ = 2π/360 = 1.75× 10−2

arcminute: 1′ = 1◦/60 = 2.91× 10−4

arcsecond: 1′′ = 1′/60 = 4.85× 10−6

milliarcsecond: 1 mas = 1′′/1000 = 4.85× 10−9

As an example: the diameter of the full moon on the sky is 31′ , i.e. half a degree.

Note: for parameters of the Galaxy see p 41.
Galactic Center distance: DGC = 8 kpc = 26 100 ly = 2.5× 1017 km.
Mass of Galactic Black Hole: M• � 3× 106 M�.
Schwarzschild radius of Galactic Black Hole: RS = 2G M•/c2 = 8.9×106 km. (Many papers also define a ‘gravitational radius’, which in general relativity papers
is usually synonymous to Schwarzschild radius, while in some astrophysical papers it is defined as Rg = G M•/c2 (i.e. 4.4× 109 m for the Galactic Black Hole).)
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Table B.2. Astronomical observing bands.

Band ν λ E = hν

Radio (m wave) 10 MHz–1 GHz 30 m–30 cm 4× 10−8 eV–4× 10−6 eV
Radio (cm wave) 1 GHz–100 GHz 30 cm–3 mm 4× 10−6 eV–4× 10−4 eV
mm and sub-mm wave 100 GHz–1 THz 3 mm–0.3 mm 4× 10−4 eV–4× 10−3 eV
Far-infrared (FIR) 1 THz–10 THz 300 µm–30 µm 4× 10−3 eV–4× 10−2 eV
Mid-infrared (MIR) 1013 Hz–6× 1013 Hz 30 µm–5 µm 4× 10−2 eV–0.3 eV
Near-infrared (NIR) 6× 1013 Hz–3 × 1014 Hz 5 µm–1 µm 0.3 eV–1 eV
Optical∗ 3× 1014 Hz–1 × 1015 Hz 1000 nm–300 nm 1 eV–4 eV
Ultraviolet 1× 1015 Hz–3 × 1016 Hz 300 nm–10 nm 4 eV–100 eV
Soft x-rays 3× 1016 Hz–3 × 1018 Hz 10 nm–0.1 nm 100 eV–10 keV
Hard x-rays 3× 1018 Hz–3 × 1020 Hz 0.1 nm–0.001 nm 10 keV–1 MeV
Gamma rays 3× 1020 Hz–3 × 1025 Hz 10−12 m–10−17 m 1 MeV–100 GeV
TeV 3× 1025 Hz–3 × 1027 Hz 10−17 m–10−20 m 0.1 TeV–30 TeV

∗ The visible part of the optical spectrum extends roughly from 800 to 400 nm. Optical wavelengths are also often
given in Ångstrom: 1 nm = 10 Å.
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accretion, 276
adiabatic spherical, 277
Bondi–Hoyle, 277, 281, 292
convection dominated (CDAF),

306
Keplerian flow dynamo, 293
Hoyle–Lyttleton, 277, 281
non spherical, 292
sub-Eddington two-temperature,

292, 299
accretion disk height, 293
accretion flow, 335
accretion luminosity, 289
accretion radius, 279, 314
ADAF (advection dominated

accretion flows), 301, 305,
330

ADM integrals 189, 193
AGNs (active galactic nuclei) 64,

314, 320, 326, 329
apparent horizon, 188

area, 192, 196
Arches cluster, 51, 111, 113
Arp 220, 62

Baade’s window, 47
Bahcall–Tremaine estimator, 236
bar, 41

corotation radius, 49
observational evidence, 54

bar shocks, 55
Bekenstein–Hawking entropy, 218
Bernoulli equation, 279
Bianchi identity, 15, 183

birefringence, 332
Birkhoff theorem, 17
bi-spectrum analysis, 233
black hole,

accretion rate, 109, 113, 280,
327, 336

angular momentum, 138, 338
angular velocity, 139
apparent boundary, 338
density in local universe, 66
dynamo, 173, 174, 288, 293
efficiency, 134, 147, 196
electrodynamics, 163
entropy, 218
evaporation, 216
fed by ISM, 281
fed by stellar winds, 281, 293
formation, 78
irreducible mass, 196
jet, 321
lifetime, 216
merging, 114, 178
primordial, 76, 221
primordial, observational

constraints, 223
quantum aspects, 207
scattering, 178

black hole mass/bulge mass ratio,
64

black hole mass/bulge velocity
dispersion ratio, 65, 66

BLR (broad line emission region),
64

bowshock, 281
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bremsstrahlung, 289, 329
Buchdahl limit, 75
bulge 47, 96

Cauchy problem, 178
central cluster, 96, 111, 231

spectrum, 235
mass density, 236
position of central mass, 239

Chandra X-ray observatory, 102,
117

Christoffel symbol, 12
CMZ (central molecular zone), 51,

53, 96, 100, 107
CND (central nuclear disk) 104,

107
CO, 39, 52, 230, 235
COBE (cosmic background

explorer), 48, 58, 98
CDAF (convection dominated

accretion flow) 306
CDM (cold dark matter), 58
computer algebra 29
conformal transformation 18, 23,

191
coordinates

bipolar, 197
Boyer–Lindquist, 137, 338
Cartesian, 9
Eddington–Finkelstein, 21, 80
isotropic, 17
Kruskal–Szekeres, 22, 80
null, 18
Rindler, 164, 166, 214
tilted spherical, 134

coordinate singularity, 17
core collapse, 249
covariant derivative, 14
corotation resonance (CR), 54
CS line emission, 100
curvature, extrinsic, 187
curvature tensor, 12
curvature scalar, 15

dark matter 41, 44, 58

Doppler effect, 327

Eddington luminosity, 288
Einstein angle, 263
Einstein equation, 15, 78, 183

semiclassical, 217
Einstein ring, 266
Einstein–Rosen manifold, 197
Einstein tensor, 15, 183
Einstein’s theory, experimental

verification, 17
Energy–momentum tensor, 10

dust, 13, 78
perfect fluid, 10, 25, 78

equivalence principle, 11
ergosphere, 139
escape velocity, 133
Euler equation

non-relativistic, 278
relativistic, 284

EVN (European VLBI network),
315

event horizon, 86, 128, 139, 188
surface resistance, 170
shadow 338

extrinsic curvature, 187

Faraday rotation, 103, 320, 332
flat radio spectrum core, 327
Friedman solution, 82, 221
fundamental plane, 67

Galactic black hole
mass, 63, 235, 245
orbits of stars, 237, 245
Schwarzschild radius, 250, 324

Galactic Center (GC), 51, 95
magnetic field, 102

Galactic center bow, 100
Galactic center radio arc, 51, 103
Galactic rotation, 39, 318

curve, 42
Galactic structure equation, 42
Galaxy evolution, 57
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Galaxy mergers, 60
Galileo’s Galaxy model, 36
geodesic deviation, 15
geodesic equation, 15, 82, 127
gravitational capture, 133, 137, 148
gravitational collapse, 72

of rotating disk, 88
time scale, 84

gravitational constant
Einsteinian, 16
Newtonian, 4

Green’s function, 153
gravitational lensing, 261, 271
gravothermal catastrophe, 249
Green Bank interferometer (GBI),

312

H I-21 cm line, 39, 42, 45, 103, 229
H II-region 35, 40, 45, 51, 111, 115
halo, 41
Hamiltonian constraint, 187
Hawking radiation, 212
Hawking temperature, 215
Hawking’s area theorem, 195, 208
Hawking’s dollar matrix, 220
He I emission line stars, 111, 229,

235
Herschel’s Galaxy model, 38
Hubble deep field, 57
Hubble law, 39

ILR (inner Lindblad resonances),
54

inertial system, 8, 12
information-loss problem, 220
initial data

maximal, 191
time symmetric, 191
non time symmetric, 200

interior Schwarzschild solution, 27
inverse Compton process, 291, 329
IRS 1, 231
IRS 13, 231
IRS 16, 117, 229, 231

ISM (interstellar media), 39, 51
isoplanatic patch, 232, 317

Jeans equation, 235, 252
jets, 321

emission model, 330
magnetic field, 324, 334
nozzle, 329
particle density, 324
polarization, 331
relativistic beaming, 327
size, 326

Kant’s Galaxy model, 38
Kapetyn Universe, 38
Keck telescope, 231
Keplerian flow dynamo model, 292
Kerr metric, 91, 138, 338

effective potential, 141
Killing tensor 139

for Kerr metric, 140
Killing equation, 127
Killing vector fields, 127, 171

for Kerr metric, 138
for Schwarzschild metric, 128

Klein–Gordon equation, 150
Knox–Thompson method, 233
Kruskal–Szekeres diagram, 24

lapse function, 168, 186
LBT (large binocular telescope),

242
large scale structure formation, 58
laws of black hole mechanics, 208
Leonard–Merrit estimators, 237
Lie derivative, 169
longitude–velocity diagram, 42, 54,

101
LLAGN (low luminosity AGN),

307, 336
Lucy algorithm, 233

M 31, 38, 248, 336
M 33, 67
M 51, 38, 46
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M 63, 46
M 84, 64
M 87, 340
MACHOS (massive compact halo

objects), 50
macrolensing, 267
magnification bias, 270
mass defect, 28
mass-luminosity ratio, 49
mass segregation, 248
maximal disk, 49
Maxwell equations, 13, 164, 184

and Killing vector, 171
(3+ 1)-decomposition, 168

membrane paradigm, 164
metric, spherically symmetric, 16,

25, 79
MHD (magneto hydrodynamics),

294, 322
microlensing, 49, 268
Milky Way, parameters, 41
Minkowski metric, 9
momentum constraint, 187
MOND (modified Newtonian

dynamics), 44

NGC 891, 36
NGC 1232, 36
NGC 4258, 63, 235
NGC 4565, 36
NGC 7052, 64
neutron stars, 73

maximal mass, 75
Newton’s gravitational theory, 4,

180
No-Hair-Theorem, 208
non-thermal radio filaments (NTF)

103
nuclear stellar bulge, 96

Ohmic diffusion, 295
Oppenheimer–Snyder collapse, 77
Orion arm, 41

Penrose diagram, 19, 153

Penrose process, 147
Periastron shift, 242
Perseus arm, 45
photon orbit, 133, 145, 338
Plummer model, 236
Poincaré charges, 189
Poincaré transformation, 9
point spread function, 232
population I, II, III stars, 45
primordial black hole, 76
pulsar, 75

quasar, 62, 319, 336
quasar epoch, 62
quasinormal modes

Kerr spacetime, 161
Schwarzschild spacetime, 155

Quintuplet cluster, 51, 111

reconnection 106, 287
relativistic beaming, 327
Richardson–Lucy deconvolution,

48
Riemannian curvature tensor, 12
Riemannian spacetime, 12
Ricci tensor, 15
Reduce, 29

Sagittarius arm, 45
Sagittarius–Carina arm, 45
scalar field in Schwarzschild

spacetime, 149
scatter broadening, 315, 326
Schwarzschild metric

effective potential, 129
exterior, 16, 29, 79, 127
interior, 27
types of trajectories, 130

SDS (Sloan digital sky survey), 58
seeing, 232
Sgr A East, 114
Sgr A West, 107, 109, 291, 311
Sgr A*, 310

infrared counterpart, 99, 240,
242, 318
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jet, 293, 299, 322
low luminosity, 277, 288, 307,

319
position, 317
radio spectrum, 311, 319
size, 314
spectrum 298, 305, 334
variability, 312
X-ray emission, 117, 291, 329
X-ray flare, 241, 312

Shapley’s Galaxy model, 38
Shakura–Sunyaev viscosity

parameter, 294, 300
SHARP, 234, 238, 241, 245
shift-and-add-algorithm, 233
shift function, 186
SiO shocktracer, 52, 57
SMA (sub-mm array), 314
smoothed particle hydrodynamics

(SPH), 259
sound speed, adiabatic, 278
special relativity principle, 9
speckle interferometry, 232
star formation, 61, 96, 101, 111
stellar collider, 253
stellar cusp, 254
sub-mm bump, 298, 319, 326, 329,

336, 338
summation convention, 9
superradiant scattering, 163
surface gravity, 209
synchrotron emission, 39, 104, 324,

329, 331
synchrotron self compton process

(SSC), 329

tangent point method, 42
tensor

covariant, 9
contravariant, 9

Teukolsky equation, 158
Thorne–Zytkow object, 249
tidal disruption, 115, 251

tidal flares, 259
tidal force, 6, 15, 29, 127, 249
tidal force matrix, 6
tidal radius, 251
tidal scattering, 259
tidal spin-up, 257
tip-tilt measurements, 231
TOV (Tolman–Oppenheimer–

Volkoff) equation, 26,
73

transonic radius, 279, 282
trapped region, 188

ULIRG (ultra luminous infrared
galaxy), 54, 61

unipolar inductor, 173, 175
uniqueness theorems, 208
Unruh effect, 213, 219

VLA (very large array), 51, 105,
312

VLBA (very long baseline array),
315, 318

VLBI (very long baseline
interferometry), 310, 314,
317, 339

VLT (very large telescope), 232
velocity dispersion, 65, 253
viscosity, 293

wave evolution in Kerr spacetime,
161

Weyl tensor, 16, 148
white dwarfs, 73

maximal mass, 74
wormhole, 199
Wright’s Galaxy model, 37

X-ray binaries (XRB), 102, 307,
336

Zeeman effect, 103
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